-
2
-
-
0001874919
-
A duality theorem for Willmore surfaces
-
[Bry]
-
[Bry] R. BKYANT, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 23-53.
-
(1984)
J. Differential Geom.
, vol.20
, pp. 23-53
-
-
Bkyant, R.1
-
3
-
-
0001473532
-
Some conformal invariants of submanifolds and their application
-
[Ch]
-
[Ch] B. Y. CHEN, Some conformal invariants of submanifolds and their application, Bollettino della Unione Matematica Italiana 10 (1974), 380-385.
-
(1974)
Bollettino della Unione Matematica Italiana
, vol.10
, pp. 380-385
-
-
Chen, B.Y.1
-
5
-
-
51649203357
-
On subharmonic functions and differential geometry in the large
-
[Hu]
-
[Hu] A. HUBER, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 181-206.
-
(1957)
Comment. Math. Helv.
, vol.32
, pp. 181-206
-
-
Huber, A.1
-
6
-
-
0000278877
-
Comparison surfaces for the Willmore problem
-
[Kus]
-
[Kus] R. KUSNER, Comparison surfaces for the Willmore problem, Pacific J. Math. 138 (1989), 317-345.
-
(1989)
Pacific J. Math.
, vol.138
, pp. 317-345
-
-
Kusner, R.1
-
7
-
-
0035289434
-
The Willmore flow with small initial energy
-
[KuSch 1]
-
[KuSch 1] E. KUWERT and R. SCHÄTZLE, The Willmore Flow with small initial energy, J. Differential Geom. 57 (2001), 409-441.
-
(2001)
J. Differential Geom.
, vol.57
, pp. 409-441
-
-
Kuwert, E.1
Schätzle, R.2
-
8
-
-
0038779042
-
Gradient flow for the Willmore functional
-
[KuSch 2]
-
[KuSch 2] _, Gradient flow for the Willmore functional, Commun. Anal. Geom. 10 (2002), 307-339.
-
(2002)
Commun. Anal. Geom.
, vol.10
, pp. 307-339
-
-
-
9
-
-
0001278224
-
A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces
-
[LY]
-
[LY] P. Li and S.-T. YAU, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces, Invent. Math. 69 (1982), 269-291.
-
(1982)
Invent. Math.
, vol.69
, pp. 269-291
-
-
Li, P.1
Yau, S.-T.2
-
10
-
-
78651547991
-
A numerical scheme for radially symmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow
-
[MaSi]
-
[MaSi] U. F. MAYER and G. SIMONETT, A numerical scheme for radially symmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow, Interfaces and Free Boundaries 4 (2002), 89-109.
-
(2002)
Interfaces and Free Boundaries
, vol.4
, pp. 89-109
-
-
Mayer, U.F.1
Simonett, G.2
-
11
-
-
0029679718
-
On surfaces of finite total curvature
-
[MuSv]
-
[MuSv] S. MÜLLER and V. SVERAK, On surfaces of finite total curvature, J. Differential Geom. 42 (1995), 229-258.
-
(1995)
J. Differential Geom.
, vol.42
, pp. 229-258
-
-
Müller, S.1
Sverak, V.2
-
15
-
-
0000526405
-
Existence of surfaces minimizing the Willmore functional
-
[Sim 2]
-
[Sim 2] _, Existence of surfaces minimizing the Willmore functional, Commun. Anal. and Geom. 1 (1993), 281-326.
-
(1993)
Commun. Anal. and Geom.
, vol.1
, pp. 281-326
-
-
-
16
-
-
85039408535
-
Singular sets and aaymptotics in geometric analysis
-
[Sim 3], Institut für Angewandte Mathematik, Universität Bonn
-
[Sim 3] _, Singular sets and aaymptotics in geometric analysis, Lipschitz lectures, Institut für Angewandte Mathematik, Universität Bonn (1996).
-
(1996)
Lipschitz Lectures
-
-
-
17
-
-
0002275656
-
On a problem of Chen, Willmore, et al.
-
[Wei]
-
[Wei] J. WEINER, On a problem of Chen, Willmore, et al., Indiana Univ. Math. J. 27 (1978), 18-35.
-
(1978)
Indiana Univ. Math. J.
, vol.27
, pp. 18-35
-
-
Weiner, J.1
|