메뉴 건너뛰기




Volumn 30, Issue 3, 2007, Pages 293-314

Boundary value problems for the one-dimensional Willmore equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34547420684     PISSN: 09442669     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00526-007-0089-6     Document Type: Article
Times cited : (41)

References (16)
  • 1
    • 0038374781 scopus 로고    scopus 로고
    • Existence of minimizing Willmore surfaces of prescribed genus
    • 10
    • BauerM. Kuwert E. (2003). Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Notices 2003(10): 553-576
    • (2003) Int. Math. Res. Notices , vol.2003 , pp. 553-576
    • Bauerm. Kuwert, E.1
  • 2
    • 33646388390 scopus 로고    scopus 로고
    • Error analysis of a finite element method for the Willmore flow of graphs
    • Deckelnick K. and Dziuk G. (2006). Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8: 21-46
    • (2006) Interfaces Free Bound. , vol.8 , pp. 21-46
    • Deckelnick, K.1    Dziuk, G.2
  • 4
    • 0000514542 scopus 로고
    • Orell Füssli Zürich
    • Euler, L.: Opera Omnia, Ser. 1, 24. Orell Füssli Zürich (1952)
    • (1952) Opera Omnia, Ser. , vol.1 , pp. 24
    • Euler, L.1
  • 5
    • 0035289434 scopus 로고    scopus 로고
    • The Willmore flow with small initial energy
    • Kuwert E. and Schätzle R. (2001). The Willmore flow with small initial energy. J. Differ. Geom. 57: 409-441
    • (2001) J. Differ. Geom. , vol.57 , pp. 409-441
    • Kuwert, E.1    Schätzle, R.2
  • 6
    • 0038779042 scopus 로고    scopus 로고
    • Gradient flow for the Willmore functional
    • Kuwert E. and Schätzle R. (2002). Gradient flow for the Willmore functional. Commun. Anal. Geom. 10: 307-339
    • (2002) Commun. Anal. Geom. , vol.10 , pp. 307-339
    • Kuwert, E.1    Schätzle, R.2
  • 7
    • 15744389246 scopus 로고    scopus 로고
    • Removability of point singularities of Willmore surfaces
    • Kuwert E. and Schätzle R. (2004). Removability of point singularities of Willmore surfaces. Ann. Math. 160: 315-357
    • (2004) Ann. Math. , vol.160 , pp. 315-357
    • Kuwert, E.1    Schätzle, R.2
  • 8
    • 84972507666 scopus 로고
    • The total squared curvature of closed curves
    • Langer J. and Singer D.A. (1984). The total squared curvature of closed curves. J. Differ. Geom. 20: 1-22
    • (1984) J. Differ. Geom. , vol.20 , pp. 1-22
    • Langer, J.1    Singer, D.A.2
  • 9
    • 0042228997 scopus 로고    scopus 로고
    • Explicit elastic curves
    • Linnér A. (1998). Explicit elastic curves. Ann. Global Anal. Geom. 16: 445-475
    • (1998) Ann. Global Anal. Geom. , vol.16 , pp. 445-475
    • Linnér, A.1
  • 10
    • 78651547991 scopus 로고    scopus 로고
    • A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow
    • Mayer U.F. and Simonett G. (2002). A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow. Interfaces Free Bound. 4: 89-109
    • (2002) Interfaces Free Bound. , vol.4 , pp. 89-109
    • Mayer, U.F.1    Simonett, G.2
  • 11
    • 0001851007 scopus 로고
    • Boundary value problems for variational integrals involving surface curvatures
    • Nitsche J.C.C. (1993). Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51: 363-387
    • (1993) Q. Appl. Math. , vol.51 , pp. 363-387
    • Nitsche, J.C.C.1
  • 14
    • 0000526405 scopus 로고
    • Existence of surfaces minimizing the Willmore functional
    • Simon L. (1993). Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1: 281-326
    • (1993) Commun. Anal. Geom. , vol.1 , pp. 281-326
    • Simon, L.1
  • 15
    • 0011599168 scopus 로고    scopus 로고
    • The Willmore flow near spheres
    • Simonett G. (2001). The Willmore flow near spheres. Differ. Integral Equ. 14: 1005-1014
    • (2001) Differ. Integral Equ. , vol.14 , pp. 1005-1014
    • Simonett, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.