-
1
-
-
0038374781
-
Existence of minimizing Willmore surfaces of prescribed genus
-
10
-
BauerM. Kuwert E. (2003). Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Notices 2003(10): 553-576
-
(2003)
Int. Math. Res. Notices
, vol.2003
, pp. 553-576
-
-
Bauerm. Kuwert, E.1
-
2
-
-
33646388390
-
Error analysis of a finite element method for the Willmore flow of graphs
-
Deckelnick K. and Dziuk G. (2006). Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8: 21-46
-
(2006)
Interfaces Free Bound.
, vol.8
, pp. 21-46
-
-
Deckelnick, K.1
Dziuk, G.2
-
4
-
-
0000514542
-
-
Orell Füssli Zürich
-
Euler, L.: Opera Omnia, Ser. 1, 24. Orell Füssli Zürich (1952)
-
(1952)
Opera Omnia, Ser.
, vol.1
, pp. 24
-
-
Euler, L.1
-
5
-
-
0035289434
-
The Willmore flow with small initial energy
-
Kuwert E. and Schätzle R. (2001). The Willmore flow with small initial energy. J. Differ. Geom. 57: 409-441
-
(2001)
J. Differ. Geom.
, vol.57
, pp. 409-441
-
-
Kuwert, E.1
Schätzle, R.2
-
6
-
-
0038779042
-
Gradient flow for the Willmore functional
-
Kuwert E. and Schätzle R. (2002). Gradient flow for the Willmore functional. Commun. Anal. Geom. 10: 307-339
-
(2002)
Commun. Anal. Geom.
, vol.10
, pp. 307-339
-
-
Kuwert, E.1
Schätzle, R.2
-
7
-
-
15744389246
-
Removability of point singularities of Willmore surfaces
-
Kuwert E. and Schätzle R. (2004). Removability of point singularities of Willmore surfaces. Ann. Math. 160: 315-357
-
(2004)
Ann. Math.
, vol.160
, pp. 315-357
-
-
Kuwert, E.1
Schätzle, R.2
-
8
-
-
84972507666
-
The total squared curvature of closed curves
-
Langer J. and Singer D.A. (1984). The total squared curvature of closed curves. J. Differ. Geom. 20: 1-22
-
(1984)
J. Differ. Geom.
, vol.20
, pp. 1-22
-
-
Langer, J.1
Singer, D.A.2
-
9
-
-
0042228997
-
Explicit elastic curves
-
Linnér A. (1998). Explicit elastic curves. Ann. Global Anal. Geom. 16: 445-475
-
(1998)
Ann. Global Anal. Geom.
, vol.16
, pp. 445-475
-
-
Linnér, A.1
-
10
-
-
78651547991
-
A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow
-
Mayer U.F. and Simonett G. (2002). A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow. Interfaces Free Bound. 4: 89-109
-
(2002)
Interfaces Free Bound.
, vol.4
, pp. 89-109
-
-
Mayer, U.F.1
Simonett, G.2
-
11
-
-
0001851007
-
Boundary value problems for variational integrals involving surface curvatures
-
Nitsche J.C.C. (1993). Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51: 363-387
-
(1993)
Q. Appl. Math.
, vol.51
, pp. 363-387
-
-
Nitsche, J.C.C.1
-
14
-
-
0000526405
-
Existence of surfaces minimizing the Willmore functional
-
Simon L. (1993). Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1: 281-326
-
(1993)
Commun. Anal. Geom.
, vol.1
, pp. 281-326
-
-
Simon, L.1
-
15
-
-
0011599168
-
The Willmore flow near spheres
-
Simonett G. (2001). The Willmore flow near spheres. Differ. Integral Equ. 14: 1005-1014
-
(2001)
Differ. Integral Equ.
, vol.14
, pp. 1005-1014
-
-
Simonett, G.1
|