메뉴 건너뛰기




Volumn 10, Issue 1, 2010, Pages 236-244

Modified Recursive Least Squares algorithm to train the Hybrid Multilayered Perceptron (HMLP) network

Author keywords

Artificial Neural Network; Hybrid Multilayered Perceptron; Modified Recursive Least Square; Multilayered Perceptron; Pattern recognition

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BENCHMARK DATA; CLASSIFICATION PERFORMANCE; COMPARISON RESULT; CONVERGENCE RATES; FORGETTING FACTORS; HYBRID MULTILAYERED PERCEPTRON; LEARNING RATES; LINEAR CONNECTIONS; MACHINE-LEARNING; MODIFIED RECURSIVE LEAST SQUARE; MULTI-LAYERED; MULTILAYERED PERCEPTRON; PERCEPTRON; RECURSIVE LEAST SQUARE ALGORITHMS; RECURSIVE LEAST SQUARES; RECURSIVE LEAST SQUARES ALGORITHMS; RECURSIVE PREDICTION; RLS ALGORITHMS; UCI REPOSITORY;

EID: 70350087544     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2009.06.018     Document Type: Article
Times cited : (44)

References (53)
  • 1
    • 33645130172 scopus 로고    scopus 로고
    • Master Thesis, Department of Computer Science, University of Adelaide, Australia
    • A. Hoang, Supervised classifier performance on the UCI database, Master Thesis, Department of Computer Science, University of Adelaide, Australia, 1997.
    • (1997) Supervised classifier performance on the UCI database
    • Hoang, A.1
  • 2
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • Fayyad U. The KDD process for extracting useful knowledge from volumes of data. Communication of the ACM 39 (1996) 27-34
    • (1996) Communication of the ACM , vol.39 , pp. 27-34
    • Fayyad, U.1
  • 3
    • 23844488890 scopus 로고    scopus 로고
    • Introduction to fuzzy systems neural networks and genetic algorithms
    • Ruan D. (Ed), Kluwer Academic Publishers, USA
    • Takagi H. Introduction to fuzzy systems neural networks and genetic algorithms. In: Ruan D. (Ed). Intelligent Systems: Fuzzy Logic, Neural Networks and Genetic Algorithms (1997), Kluwer Academic Publishers, USA 1-33
    • (1997) Intelligent Systems: Fuzzy Logic, Neural Networks and Genetic Algorithms , pp. 1-33
    • Takagi, H.1
  • 5
    • 13544277431 scopus 로고    scopus 로고
    • Classification with incomplete survey data: a Hopfield neural network approach
    • Wang S. Classification with incomplete survey data: a Hopfield neural network approach. Computers and Operations Research 32 10 (2005) 2583-2594
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2583-2594
    • Wang, S.1
  • 7
    • 53749088345 scopus 로고    scopus 로고
    • Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations
    • Shirvany Y., Hayati M., and Moradian R. Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Applied Soft Computing 9 1 (2009) 20-29
    • (2009) Applied Soft Computing , vol.9 , Issue.1 , pp. 20-29
    • Shirvany, Y.1    Hayati, M.2    Moradian, R.3
  • 8
    • 53749105984 scopus 로고    scopus 로고
    • Soft computing methods applied to the control of a flexible robot manipulator
    • Subudhi B., and Morris A.S. Soft computing methods applied to the control of a flexible robot manipulator. Applied Soft Computing 9 1 (2009) 149-158
    • (2009) Applied Soft Computing , vol.9 , Issue.1 , pp. 149-158
    • Subudhi, B.1    Morris, A.S.2
  • 9
    • 53749085067 scopus 로고    scopus 로고
    • Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion
    • Mandal S., Sivaprasad P.V., Venugopal S., and Murthy K.P.N. Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Applied Soft Computing 9 1 (2009) 237-244
    • (2009) Applied Soft Computing , vol.9 , Issue.1 , pp. 237-244
    • Mandal, S.1    Sivaprasad, P.V.2    Venugopal, S.3    Murthy, K.P.N.4
  • 10
    • 58549090302 scopus 로고    scopus 로고
    • A neural-network-based nonlinear metamodeling approach to financial time series forecasting
    • Yu L., Wang S., and Lai K.K. A neural-network-based nonlinear metamodeling approach to financial time series forecasting. Applied Soft Computing 9 2 (2009) 563-574
    • (2009) Applied Soft Computing , vol.9 , Issue.2 , pp. 563-574
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 12
    • 61749087097 scopus 로고    scopus 로고
    • Exponential stability of recurrent neural networks with time-varying discrete and distributed delays
    • Li T., Luo Q., Sun C., and Zhang B. Exponential stability of recurrent neural networks with time-varying discrete and distributed delays. Nonlinear Analysis: Real World Applications 10 4 (2009) 2581-2589
    • (2009) Nonlinear Analysis: Real World Applications , vol.10 , Issue.4 , pp. 2581-2589
    • Li, T.1    Luo, Q.2    Sun, C.3    Zhang, B.4
  • 17
    • 0011771246 scopus 로고
    • Storing and processing information in connectionist systems
    • Eckmiller R. (Ed), North-Holland, Amsterdam
    • Geiger H. Storing and processing information in connectionist systems. In: Eckmiller R. (Ed). Advanced Neural Computers (1990), North-Holland, Amsterdam 271-277
    • (1990) Advanced Neural Computers , pp. 271-277
    • Geiger, H.1
  • 18
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., and Girosi F. Networks for approximation and learning. Proceedings of the IEEE 78 9 (1990) 1481-1497
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 21
    • 0029051142 scopus 로고
    • Recurrent radial basis function networks for adaptive noise cancellation
    • Billings S.A., and Fung C.F. Recurrent radial basis function networks for adaptive noise cancellation. Neural Networks 8 2 (1995) 273-290
    • (1995) Neural Networks , vol.8 , Issue.2 , pp. 273-290
    • Billings, S.A.1    Fung, C.F.2
  • 22
    • 44949277250 scopus 로고
    • A comparison of the back propagation and recursive prediction error algorithms for training neural networks
    • Billings S.A., Jamaluddin H.B., and Chen S. A comparison of the back propagation and recursive prediction error algorithms for training neural networks. Mechanical System and Signal Processing 5 3 (1991) 233-255
    • (1991) Mechanical System and Signal Processing , vol.5 , Issue.3 , pp. 233-255
    • Billings, S.A.1    Jamaluddin, H.B.2    Chen, S.3
  • 23
    • 84877479752 scopus 로고
    • Properties of neural networks with applications to modeling non-linear dynamical systems
    • Billings S.A., Jamaluddin H.B., and Chen S. Properties of neural networks with applications to modeling non-linear dynamical systems. International Journal of Control 55 1 (1992) 193-224
    • (1992) International Journal of Control , vol.55 , Issue.1 , pp. 193-224
    • Billings, S.A.1    Jamaluddin, H.B.2    Chen, S.3
  • 26
  • 31
    • 25444457795 scopus 로고    scopus 로고
    • Gradient-based variable forgetting factor RLS algorithm in time varying environments
    • Leung S.H. Gradient-based variable forgetting factor RLS algorithm in time varying environments. IEEE Transactions on Signal Processing 53 8 (2005) 3141-3150
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.8 , pp. 3141-3150
    • Leung, S.H.1
  • 33
    • 0001342953 scopus 로고    scopus 로고
    • Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking
    • Song S., Lim J.S., Baek S.J., and Sung K.M. Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking. Electronics Letters 36 11 (2000) 988-990
    • (2000) Electronics Letters , vol.36 , Issue.11 , pp. 988-990
    • Song, S.1    Lim, J.S.2    Baek, S.J.3    Sung, K.M.4
  • 36
    • 0026820187 scopus 로고
    • Fast learning process of multilayer neural networks using recursive least squares method
    • Azimi-Sadjadi M.R., and Liou R.J. Fast learning process of multilayer neural networks using recursive least squares method. IEEE Transaction on Signal Processing 40 2 (1992) 446-450
    • (1992) IEEE Transaction on Signal Processing , vol.40 , Issue.2 , pp. 446-450
    • Azimi-Sadjadi, M.R.1    Liou, R.J.2
  • 39
    • 42949161478 scopus 로고    scopus 로고
    • Performance analysis of a RLS based MLP-DFE in time-invariant and time-varying channels
    • Mahmood K., Zidouri A., and Zerguine A. Performance analysis of a RLS based MLP-DFE in time-invariant and time-varying channels. Digital Signal Processing 18 3 (2008) 307-320
    • (2008) Digital Signal Processing , vol.18 , Issue.3 , pp. 307-320
    • Mahmood, K.1    Zidouri, A.2    Zerguine, A.3
  • 40
    • 70350111714 scopus 로고    scopus 로고
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, D.W. Aha, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine, 1998 of Conference, http://archive.ics.uci.edu/ml/datasets.html.
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, D.W. Aha, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine, 1998 of Conference, http://archive.ics.uci.edu/ml/datasets.html.
  • 41
    • 70350101796 scopus 로고    scopus 로고
    • P. Eklund, A. Hoang, A performance survey of public domain machine learning algorithms, Technical Report, School of Information Technology, Griffith University, 2002.
    • P. Eklund, A. Hoang, A performance survey of public domain machine learning algorithms, Technical Report, School of Information Technology, Griffith University, 2002.
  • 44
    • 0024861871 scopus 로고
    • Approximations by superposition of a sigmoidal function, mathematics of control
    • Cybenko G. Approximations by superposition of a sigmoidal function, mathematics of control. Signal and Systems 2 (1989) 303-314
    • (1989) Signal and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 45
    • 0024866495 scopus 로고
    • On the approximation realization on continuous mappings by neural networks
    • Funahashi K. On the approximation realization on continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 47
    • 0022471098 scopus 로고
    • Learning representation by back-propagation errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representation by back-propagation errors. Nature (London) 323 (1986) 533-536
    • (1986) Nature (London) , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 49
    • 0024137490 scopus 로고    scopus 로고
    • R.A. Jacobs, Increased rates of convergence through learning rate adaptation, 1, Technical Report in Neural Networks, University of Massachusetts, USA, 1988, pp. 295-307.
    • R.A. Jacobs, Increased rates of convergence through learning rate adaptation, vol. 1, Technical Report in Neural Networks, University of Massachusetts, USA, 1988, pp. 295-307.
  • 50
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • Duch W., Adamczak R., and Grabczewski K. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12 2 (2001) 277-306
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.2 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 53
    • 0012018345 scopus 로고
    • Comparison of classifiers in high dimensional settings
    • Technical Report Number 92-02, Department of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland
    • S. Aeberhard, D. Coomans, O. Vel, Comparison of classifiers in high dimensional settings, Technical Report Number 92-02, Department of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland, 1992.
    • (1992)
    • Aeberhard, S.1    Coomans, D.2    Vel, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.