-
1
-
-
30844465764
-
-
10.1126/science.1119839
-
J. P. Buban, K. Matsunaga, J. Chen, N. Shibata, W. Y. Ching, T. Yamamoto, and Y. Ikuhara, Science 311, 212 (2006). 10.1126/science.1119839
-
(2006)
Science
, vol.311
, pp. 212
-
-
Buban, J.P.1
Matsunaga, K.2
Chen, J.3
Shibata, N.4
Ching, W.Y.5
Yamamoto, T.6
Ikuhara, Y.7
-
2
-
-
1942455803
-
-
10.1038/nature02410
-
N. Shibata, S. J. Pennycook, T. R. Gosnell, G. S. Painter, W. A. Shelton, and P. F. Becher, Nature (London) 428, 730 (2004). 10.1038/nature02410
-
(2004)
Nature (London)
, vol.428
, pp. 730
-
-
Shibata, N.1
Pennycook, S.J.2
Gosnell, T.R.3
Painter, G.S.4
Shelton, W.A.5
Becher, P.F.6
-
3
-
-
4444367513
-
-
10.1038/nmat1191
-
G. Duscher, M. F. Chisholm, U. Alber, and M. Rühle, Nature Mater. 3, 621 (2004). 10.1038/nmat1191
-
(2004)
Nature Mater.
, vol.3
, pp. 621
-
-
Duscher, G.1
Chisholm, M.F.2
Alber, U.3
Rühle, M.4
-
4
-
-
33748300556
-
-
10.1103/PhysRevLett.97.106802
-
Y. Sato, J. P. Buban, T. Mizoguchi, N. Shibata, M. Yodogawa, T. Yamamoto, and Y. Ikuhara, Phys. Rev. Lett. 97, 106802 (2006). 10.1103/PhysRevLett.97. 106802
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 106802
-
-
Sato, Y.1
Buban, J.P.2
Mizoguchi, T.3
Shibata, N.4
Yodogawa, M.5
Yamamoto, T.6
Ikuhara, Y.7
-
5
-
-
4243848273
-
-
10.1103/PhysRevLett.81.3675
-
Y. Yan, M. F. Chisholm, G. Duscher, A. Maiti, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 81, 3675 (1998). 10.1103/PhysRevLett.81.3675
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 3675
-
-
Yan, Y.1
Chisholm, M.F.2
Duscher, G.3
Maiti, A.4
Pennycook, S.J.5
Pantelides, S.T.6
-
8
-
-
34347227599
-
-
10.1016/0001-6160(64)90175-0
-
D. G. Brandon, B. Ralph, S. Rangathan, and M. S. Wald, Acta Metall. 12, 813 (1964). 10.1016/0001-6160(64)90175-0
-
(1964)
Acta Metall.
, vol.12
, pp. 813
-
-
Brandon, D.G.1
Ralph, B.2
Rangathan, S.3
Wald, M.S.4
-
9
-
-
25744460922
-
-
10.1103/PhysRevB.50.17953
-
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 10.1103/PhysRevB.50. 17953
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
13
-
-
0031125251
-
-
S.-Y. Chun, N. Wakiya, H. Funakubo, K. Shinozaki, and N. Mizutani, J. Am. Ceram. Soc. 80, 995 (1997).
-
(1997)
J. Am. Ceram. Soc.
, vol.80
, pp. 995
-
-
Chun, S.-Y.1
Wakiya, N.2
Funakubo, H.3
Shinozaki, K.4
Mizutani, N.5
-
14
-
-
31344438215
-
-
10.1088/0953-8984/18/5/002
-
J.-L. Zhao, W. Zhang, X.-M. Li, J.-W. Feng, and X. Shi, J. Phys.: Condens. Matter 18, 1495 (2006). 10.1088/0953-8984/18/5/002
-
(2006)
J. Phys.: Condens. Matter
, vol.18
, pp. 1495
-
-
Zhao, J.-L.1
Zhang, W.2
Li, X.-M.3
Feng, J.-W.4
Shi, X.5
-
15
-
-
45249100389
-
-
10.1103/PhysRevB.77.245202
-
F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B 77, 245202 (2008). 10.1103/PhysRevB.77.245202
-
(2008)
Phys. Rev. B
, vol.77
, pp. 245202
-
-
Oba, F.1
Togo, A.2
Tanaka, I.3
Paier, J.4
Kresse, G.5
-
16
-
-
79953876023
-
-
10.1107/S0108768188010109
-
J. Albertsson, S. C. Abrahams, and A. Kvick, Acta Crystallogr., Sect. B: Struct. Sci. 45, 34 (1989). 10.1107/S0108768188010109
-
(1989)
Acta Crystallogr., Sect. B: Struct. Sci.
, vol.45
, pp. 34
-
-
Albertsson, J.1
Abrahams, S.C.2
Kvick, A.3
-
18
-
-
0029236780
-
-
10.1016/0925-8388(94)01265-J
-
O. Greis, R. Ziel, B. Breidenstein, A. Haase, and T. Petzel, J. Alloys Compd. 216, 255 (1994). 10.1016/0925-8388(94)01265-J
-
(1994)
J. Alloys Compd.
, vol.216
, pp. 255
-
-
Greis, O.1
Ziel, R.2
Breidenstein, B.3
Haase, A.4
Petzel, T.5
-
19
-
-
0004033098
-
-
2nd ed. (Jon Wiley & Sons, New York
-
R. W. Wyckoff, Crystal Structures, 2nd ed. (Jon Wiley & Sons, New York, 1964), Vol. 2.
-
(1964)
Crystal Structures
, vol.2
-
-
Wyckoff, R.W.1
-
20
-
-
0242341371
-
-
10.1080/0892702031000104887
-
J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003). 10.1080/0892702031000104887
-
(2003)
Mol. Simul.
, vol.29
, pp. 291
-
-
Gale, J.D.1
Rohl, A.L.2
-
21
-
-
33749233429
-
-
10.1103/PhysRevB.72.064109
-
Y. Sato, T. Mizoguchi, F. Oba, Y. Ikuhara, and T. Yamamoto, Phys. Rev. B 72, 064109 (2005). The number of atoms in the supercell used in Ref. was 448 atoms. In this study, supercell containing smaller number of atoms (224 atoms) was employed to use the first-principles calculations. GB atomic arrangement did not change significantly with the use of 224-atom supercell. 10.1103/PhysRevB.72.064109
-
(2005)
Phys. Rev. B
, vol.72
, pp. 064109
-
-
Sato, Y.1
Mizoguchi, T.2
Oba, F.3
Ikuhara, Y.4
Yamamoto, T.5
-
23
-
-
1142280297
-
-
10.1063/1.1636816
-
Y. Sato, F. Oba, M. Yodogawa, T. Yamamoto, and Y. Ikuhara, J. Appl. Phys. 95, 1258 (2004). 10.1063/1.1636816
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 1258
-
-
Sato, Y.1
Oba, F.2
Yodogawa, M.3
Yamamoto, T.4
Ikuhara, Y.5
-
25
-
-
0042600019
-
-
edited by P. G. Merli, G. Calestani, and M. Vittori-Antisari (Academic Press, London
-
S. J. Pennycook, in Advances in Imaging and Electron Physics, edited by, P. G. Merli, G. Calestani, and, M. Vittori-Antisari, (Academic Press, London, 2002), Vol. 123, p. 173.
-
(2002)
Advances in Imaging and Electron Physics
, vol.123
, pp. 173
-
-
Pennycook, S.J.1
-
26
-
-
0012902308
-
-
10.1016/S0009-2614(00)00656-4
-
Z. Hu, G. Kaindl, H. Ogasawara, A. Kotani, and I. Felner, Chem. Phys. Lett. 325, 241 (2000). 10.1016/S0009-2614(00)00656-4
-
(2000)
Chem. Phys. Lett.
, vol.325
, pp. 241
-
-
Hu, Z.1
Kaindl, G.2
Ogasawara, H.3
Kotani, A.4
Felner, I.5
-
27
-
-
0001565992
-
-
10.1103/PhysRevB.36.1745
-
R. C. Karnatak, J.-M. Esteva, H. Dexpert, M. Gasgnier, P. E. Caro, and L. Albert, Phys. Rev. B 36, 1745 (1987). 10.1103/PhysRevB.36.1745
-
(1987)
Phys. Rev. B
, vol.36
, pp. 1745
-
-
Karnatak, R.C.1
Esteva, J.-M.2
Dexpert, H.3
Gasgnier, M.4
Caro, P.E.5
Albert, L.6
-
28
-
-
84944648082
-
-
10.1107/S0567739476001551
-
R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Thoer. Gen. Crystallogr. A32, 751 (1976). 10.1107/S0567739476001551
-
(1976)
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Thoer. Gen. Crystallogr.
, vol.32
, pp. 751
-
-
Shannon, R.D.1
-
29
-
-
70349941876
-
-
It is considered that Zn at 2 and 3 of the undoped ZnO GB has four nearest neighbor O. Thus, the longer Pr-O bonds were formed with replacing the Zn with Pr. Distance between the Zn and the O was ∼2.70, which was longer than length of Zn-O bonds in ZnO bulk by more than 34%. On the other hand, lengths of the longer Pr-O bonds (∼2.50 or ∼2.51) for Pr(2) and Pr(3) was similar to those of Pr-O bonds in Pr2 O3 bulks.
-
It is considered that Zn at 2 and 3 of the undoped ZnO GB has four nearest neighbor O. Thus, the longer Pr-O bonds were formed with replacing the Zn with Pr. Distance between the Zn and the O was ∼2.70, which was longer than length of Zn-O bonds in ZnO bulk by more than 34%. On the other hand, lengths of the longer Pr-O bonds (∼2.50 or ∼2.51) for Pr(2) and Pr(3) was similar to those of Pr-O bonds in Pr2 O3 bulks.
-
-
-
-
30
-
-
24144449562
-
-
10.1063/1.1991989
-
K. van Benthem, A. R. Lupini, M. Kim, H.-S. Baik, S. Doh, J.-H. Lee, M. P. Oxley, S. D. Findlay, L. J. Allen, J. T. Luck, and S. J. Pennycook, Appl. Phys. Lett. 87, 034104 (2005). 10.1063/1.1991989
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 034104
-
-
Van Benthem, K.1
Lupini, A.R.2
Kim, M.3
Baik, H.-S.4
Doh, S.5
Lee, J.-H.6
Oxley, M.P.7
Findlay, S.D.8
Allen, L.J.9
Luck, J.T.10
Pennycook, S.J.11
|