-
1
-
-
0004114335
-
-
For a discussion of strategy in the synthesis of complex molecules, along with detailed case studies, see: a, Wiley, New York
-
For a discussion of strategy in the synthesis of complex molecules, along with detailed case studies, see: a) E. J. Corey, X.-M. Cheng, The Logic of Chemical Synthesis, Wiley, New York, 1989;
-
(1989)
The Logic of Chemical Synthesis
-
-
Corey, E.J.1
Cheng, X.-M.2
-
3
-
-
0004196803
-
-
For a recent review of advances in catalysis, see:, Eds, B. Cornils, W. A. Herrmann, M. Muhler, C.-H. Wong, Wiley-VCH, Weinheim
-
For a recent review of advances in catalysis, see: Catalysis from A to Z (Eds.: B. Cornils, W. A. Herrmann, M. Muhler, C.-H. Wong), Wiley-VCH, Weinheim, 2007.
-
(2007)
Catalysis from A to Z
-
-
-
4
-
-
0003913629
-
-
For a current review of allylation chemistry, see: a, Ed, J. Otera, Wiley-VCH, Weinheim
-
For a current review of allylation chemistry, see: a) S. E. Denmark, N. G. Almstead in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-VCH, Weinheim, 2000, p. 299.
-
(2000)
Modern Carbonyl Chemistry
, pp. 299
-
-
Denmark, S.E.1
Almstead, N.G.2
-
5
-
-
70349975695
-
-
For a current review on the application of the allylation reaction to the synthesis of natural products, see
-
For a current review on the application of the allylation reaction to the synthesis of natural products, see:
-
-
-
-
6
-
-
70349950592
-
-
S. R. Chemler, W R. Roush in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-VCH, Weinheim, 2000, p. 403.
-
b) S. R. Chemler, W R. Roush in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-VCH, Weinheim, 2000, p. 403.
-
-
-
-
7
-
-
0037145988
-
-
and references therein; Notable exceptions include bifunctionalized allylmetal reagents and complex crotylsilanes. For recent discussions, see: a
-
Notable exceptions include bifunctionalized allylmetal reagents and complex crotylsilanes. For recent discussions, see: a) E. M. Flamme, W R. Roush, J. Am. Chem. Soc. 2002, 124, 13644, and references therein;
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 13644
-
-
Flamme, E.M.1
Roush, W.R.2
-
9
-
-
0041878778
-
-
For a review of catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones, see: a S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763. For a review of catalytically generated allylic metal reagents that serve as electrophiles, see
-
For a review of catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones, see: a) S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763. For a review of catalytically generated allylic metal reagents that serve as electrophiles, see:
-
-
-
-
12
-
-
33644962709
-
-
For the cross-coupling of two internal alkynes, see: a
-
For the cross-coupling of two internal alkynes, see: a) J. Ryan, G. C. Micalizio, J. Am. Chem. Soc. 2006, 128, 2764.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 2764
-
-
Ryan, J.1
Micalizio, G.C.2
-
13
-
-
70349964541
-
-
For the cross-coupling of internal alkynes with substituted alkenes, see
-
For the cross-coupling of internal alkynes with substituted alkenes, see:
-
-
-
-
15
-
-
34247895716
-
-
For the cross-coupling of allenes with internal alkynes, see
-
Angew. Chem. Int. Ed. 2007, 46, 1440. For the cross-coupling of allenes with internal alkynes, see:
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 1440
-
-
-
17
-
-
44949183445
-
-
For cross-coupling of internal alkynes with aromatic imines, see
-
d) H. L. Shimp, A. Hare, M. McLaughlin, G C. Micalizio, Tetrahedron 2008, 64, 6831. For cross-coupling of internal alkynes with aromatic imines, see:
-
(2008)
Tetrahedron
, vol.64
, pp. 6831
-
-
Shimp, H.L.1
Hare, A.2
McLaughlin, M.3
Micalizio, G.C.4
-
18
-
-
53549121316
-
-
e) M. McLaughlin, M. Takahashi, G C. Micalizio, Angew. Chem. 2007, 119, 3986;
-
(2007)
Angew. Chem
, vol.119
, pp. 3986
-
-
McLaughlin, M.1
Takahashi, M.2
Micalizio, G.C.3
-
20
-
-
34250890074
-
-
For cross-coupling of internal alkenes with aromatic imines, see: f
-
For cross-coupling of internal alkenes with aromatic imines, see: f) M. Takahashi, G C. Micalizio, J. Am. Chem. Soc. 2007, 129, 7514.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 7514
-
-
Takahashi, M.1
Micalizio, G.C.2
-
21
-
-
33947602410
-
-
For a discussion of the burden of protecting groups in the synthesis of complex molecules, see
-
For a discussion of the burden of protecting groups in the synthesis of complex molecules, see: P. S. Baran, T. J. Maimone, J. M. Richter, Nature 2007, 446, 404.
-
(2007)
Nature
, vol.446
, pp. 404
-
-
Baran, P.S.1
Maimone, T.J.2
Richter, J.M.3
-
22
-
-
58049220415
-
-
For other examples of bimolecular C-C bond formation by formal metallo-[3,3] rearrangement, see: a allylic alcohol-internal alkyne: J. K. Belardi, G C. Micalizio, J. Am. Chem. Soc. 2008, 130, 16870-16872;
-
For other examples of bimolecular C-C bond formation by formal metallo-[3,3] rearrangement, see: a) allylic alcohol-internal alkyne: J. K. Belardi, G C. Micalizio, J. Am. Chem. Soc. 2008, 130, 16870-16872;
-
-
-
-
23
-
-
37049017393
-
-
allenic alcohol-aromatic imine: F. Kolundzic, G C. Micalizio, J. Am. Chem. Soc. 2007, 129, 15112;
-
b) allenic alcohol-aromatic imine: F. Kolundzic, G C. Micalizio, J. Am. Chem. Soc. 2007, 129, 15112;
-
-
-
-
24
-
-
41349098387
-
-
allenic alcohol-internal alkyne: M. McLaughlin, H. L. Shimp, R. Navarro, Synlett 2008, 735;
-
c) allenic alcohol-internal alkyne: M. McLaughlin, H. L. Shimp, R. Navarro, Synlett 2008, 735;
-
-
-
-
25
-
-
70349954883
-
-
and d allenic alcohol-internal alkyne: see Ref. [6d].
-
and d) allenic alcohol-internal alkyne: see Ref. [6d].
-
-
-
-
26
-
-
70349966078
-
-
For recent examples of imine allylation using preformed allylic silanes, see: a
-
For recent examples of imine allylation using preformed allylic silanes, see: a) J. D. Huber, N. R. Perl, J. L. Leighton, Angew. Chem. 2008, 120, 3079-3081;
-
(2008)
Angew. Chem
, vol.120
, pp. 3079-3081
-
-
Huber, J.D.1
Perl, N.R.2
Leighton, J.L.3
-
28
-
-
0041624372
-
-
b) R. Berger, P. M. A. Rabbat, J. L. Leighton, J. Am. Chem. Soc. 2003, 125, 9596;
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 9596
-
-
Berger, R.1
Rabbat, P.M.A.2
Leighton, J.L.3
-
29
-
-
0034704337
-
-
c) J. V Schaus, N. Jain, J. S. Panek, Tetrahedron 2000, 56, 10263.
-
(2000)
Tetrahedron
, vol.56
, pp. 10263
-
-
Schaus, J.V.1
Jain, N.2
Panek, J.S.3
-
30
-
-
0041434794
-
-
For recent examples using preformed allylic stannanes, see: d
-
For recent examples using preformed allylic stannanes, see: d)T. Gastner, H. Ishitani, R. Akiyama, S. Kobayashi, Angew. Chem. 2001, 113, 1949;
-
(2001)
Angew. Chem
, vol.113
, pp. 1949
-
-
Gastner, T.1
Ishitani, H.2
Akiyama, R.3
Kobayashi, S.4
-
34
-
-
33746657632
-
-
For recent examples employing preformed allylic boron reagents, see: g
-
For recent examples employing preformed allylic boron reagents, see: g) T R. Wu, J. M. Chong, J. Am. Chem. Soc. 2006, 128, 9646;
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 9646
-
-
Wu, T.R.1
Chong, J.M.2
-
36
-
-
37049035131
-
-
i) S. Lou, P. M. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2007, 129, 15398;
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 15398
-
-
Lou, S.1
Moquist, P.M.2
Schaus, S.E.3
-
37
-
-
0000577625
-
-
j) S. Itsuno, K. Watanabe, K. Ito, A. A. El-Shehawy, A. A. Sarhan, Angew. Chem. 1997, 109, 105;
-
(1997)
Angew. Chem
, vol.109
, pp. 105
-
-
Itsuno, S.1
Watanabe, K.2
Ito, K.3
El-Shehawy, A.A.4
Sarhan, A.A.5
-
39
-
-
35948929153
-
-
For recent examples using in situ generated allylic boron reagents, see: k
-
For recent examples using in situ generated allylic boron reagents, see: k) N. Selander, A. Kipke, S. Sebelius, K. J. Szabo, J. Am. Chem. Soc. 2007, 129, 13723;
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 13723
-
-
Selander, N.1
Kipke, A.2
Sebelius, S.3
Szabo, K.J.4
-
40
-
-
14844346557
-
-
l) M. Shimizu, M. Kimura, T Watanabe, Y. Tamaru, Org. Lett. 2005, 7, 637.
-
(2005)
Org. Lett
, vol.7
, pp. 637
-
-
Shimizu, M.1
Kimura, M.2
Watanabe, T.3
Tamaru, Y.4
-
41
-
-
0242497940
-
-
For examples using allylic palladium reagents generated in situ, see: m
-
For examples using allylic palladium reagents generated in situ, see: m) R. A. Fernandes, A. Stimac, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 14133;
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 14133
-
-
Fernandes, R.A.1
Stimac, A.2
Yamamoto, Y.3
-
43
-
-
0001114287
-
-
For recent examples employing allylic zinc reagents, see: o
-
For recent examples employing allylic zinc reagents, see: o) P. Wipf, C. Kendall, Org. Lett. 2001, 3, 2773;
-
(2001)
Org. Lett
, vol.3
, pp. 2773
-
-
Wipf, P.1
Kendall, C.2
-
45
-
-
0029582657
-
-
For a recent example using allylic titanium reagents generated in situ, see: q
-
For a recent example using allylic titanium reagents generated in situ, see: q) Y. Gao, F. Sato, J. Org. Chem. 1995, 60, 8136.
-
(1995)
J. Org. Chem
, vol.60
, pp. 8136
-
-
Gao, Y.1
Sato, F.2
-
46
-
-
33746217459
-
-
For reviews on the synthesis of homoallylic amines via allylic metal reagents, see: r
-
For reviews on the synthesis of homoallylic amines via allylic metal reagents, see: r) P. V Ramachandran, T E. Burghardt, Pure Appl. Chem. 2006, 78, 1397;
-
(2006)
Pure Appl. Chem
, vol.78
, pp. 1397
-
-
Ramachandran, P.V.1
Burghardt, T.E.2
-
49
-
-
0001089557
-
-
Prenylation of imines has represented a significant challenge in organic chemistry. For a route to products like 5 based on the reactivity of allylic barium reagents, see: A. Yanagisawa, K. Ogasawara, K. Yasue, H. Yamamoto, J. Chem. Soc. Chem. Commun. 1996, 367.
-
Prenylation of imines has represented a significant challenge in organic chemistry. For a route to products like 5 based on the reactivity of allylic barium reagents, see: A. Yanagisawa, K. Ogasawara, K. Yasue, H. Yamamoto, J. Chem. Soc. Chem. Commun. 1996, 367.
-
-
-
-
50
-
-
70349952245
-
-
The relative stereochemistry of 48 is proposed based on the model depicted in Figure 1 and is supported by observations made in related titanium-mediated reductive cross-coupling reactions of stereodefined allylic alcohols. For additional information, see: Ref. [7].
-
The relative stereochemistry of 48 is proposed based on the model depicted in Figure 1 and is supported by observations made in related titanium-mediated reductive cross-coupling reactions of stereodefined allylic alcohols. For additional information, see: Ref. [7].
-
-
-
-
51
-
-
33645897192
-
-
The empirical model described is based on the minimization of A-1,2 strain in a formal metallo-[3,3] rearrangement process, and does not account for the geometry at titanium. The proposed empirical model does not exclude a mechanism that follows from directed carbometalation and syn elimination. For a review of allylic strain as a principle for stereochemical control, see: R. W. Hoffmann, Chem. Rev. 1989, 89, 1841.
-
The empirical model described is based on the minimization of A-1,2 strain in a formal metallo-[3,3] rearrangement process, and does not account for the geometry at titanium. The proposed empirical model does not exclude a mechanism that follows from directed carbometalation and syn elimination. For a review of allylic strain as a principle for stereochemical control, see: R. W. Hoffmann, Chem. Rev. 1989, 89, 1841.
-
-
-
|