메뉴 건너뛰기




Volumn 48, Issue 20, 2009, Pages 3648-3652

Complex allylation by the direct cross-coupling of imines with unactivated allylic alcohols

Author keywords

Allylic compounds; Homoallylic amines; Metallacycles; Stereoselective synthesis; Titanium

Indexed keywords

ALLYLATIONS; ALLYLIC ALCOHOL; ALLYLIC COMPOUNDS; ALLYLIC TRANSPOSITION; CROSS-COUPLINGS; HIGH SELECTIVITY; HOMOALLYLIC AMINES; METALLACYCLES; ORGANOMETALLIC REAGENT; REGIO-SELECTIVE; STEREO-SELECTIVE; STEREOSELECTIVE SYNTHESIS; TRISUBSTITUTED ALKENES;

EID: 70349972518     PISSN: 14337851     EISSN: None     Source Type: Journal    
DOI: 10.1002/anie.200900236     Document Type: Article
Times cited : (38)

References (51)
  • 1
    • 0004114335 scopus 로고
    • For a discussion of strategy in the synthesis of complex molecules, along with detailed case studies, see: a, Wiley, New York
    • For a discussion of strategy in the synthesis of complex molecules, along with detailed case studies, see: a) E. J. Corey, X.-M. Cheng, The Logic of Chemical Synthesis, Wiley, New York, 1989;
    • (1989) The Logic of Chemical Synthesis
    • Corey, E.J.1    Cheng, X.-M.2
  • 3
    • 0004196803 scopus 로고    scopus 로고
    • For a recent review of advances in catalysis, see:, Eds, B. Cornils, W. A. Herrmann, M. Muhler, C.-H. Wong, Wiley-VCH, Weinheim
    • For a recent review of advances in catalysis, see: Catalysis from A to Z (Eds.: B. Cornils, W. A. Herrmann, M. Muhler, C.-H. Wong), Wiley-VCH, Weinheim, 2007.
    • (2007) Catalysis from A to Z
  • 4
    • 0003913629 scopus 로고    scopus 로고
    • For a current review of allylation chemistry, see: a, Ed, J. Otera, Wiley-VCH, Weinheim
    • For a current review of allylation chemistry, see: a) S. E. Denmark, N. G. Almstead in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-VCH, Weinheim, 2000, p. 299.
    • (2000) Modern Carbonyl Chemistry , pp. 299
    • Denmark, S.E.1    Almstead, N.G.2
  • 5
    • 70349975695 scopus 로고    scopus 로고
    • For a current review on the application of the allylation reaction to the synthesis of natural products, see
    • For a current review on the application of the allylation reaction to the synthesis of natural products, see:
  • 6
    • 70349950592 scopus 로고    scopus 로고
    • S. R. Chemler, W R. Roush in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-VCH, Weinheim, 2000, p. 403.
    • b) S. R. Chemler, W R. Roush in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-VCH, Weinheim, 2000, p. 403.
  • 7
    • 0037145988 scopus 로고    scopus 로고
    • and references therein; Notable exceptions include bifunctionalized allylmetal reagents and complex crotylsilanes. For recent discussions, see: a
    • Notable exceptions include bifunctionalized allylmetal reagents and complex crotylsilanes. For recent discussions, see: a) E. M. Flamme, W R. Roush, J. Am. Chem. Soc. 2002, 124, 13644, and references therein;
    • (2002) J. Am. Chem. Soc , vol.124 , pp. 13644
    • Flamme, E.M.1    Roush, W.R.2
  • 9
    • 0041878778 scopus 로고    scopus 로고
    • For a review of catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones, see: a S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763. For a review of catalytically generated allylic metal reagents that serve as electrophiles, see
    • For a review of catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones, see: a) S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763. For a review of catalytically generated allylic metal reagents that serve as electrophiles, see:
  • 12
    • 33644962709 scopus 로고    scopus 로고
    • For the cross-coupling of two internal alkynes, see: a
    • For the cross-coupling of two internal alkynes, see: a) J. Ryan, G. C. Micalizio, J. Am. Chem. Soc. 2006, 128, 2764.
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 2764
    • Ryan, J.1    Micalizio, G.C.2
  • 13
    • 70349964541 scopus 로고    scopus 로고
    • For the cross-coupling of internal alkynes with substituted alkenes, see
    • For the cross-coupling of internal alkynes with substituted alkenes, see:
  • 15
    • 34247895716 scopus 로고    scopus 로고
    • For the cross-coupling of allenes with internal alkynes, see
    • Angew. Chem. Int. Ed. 2007, 46, 1440. For the cross-coupling of allenes with internal alkynes, see:
    • (2007) Angew. Chem. Int. Ed , vol.46 , pp. 1440
  • 17
    • 44949183445 scopus 로고    scopus 로고
    • For cross-coupling of internal alkynes with aromatic imines, see
    • d) H. L. Shimp, A. Hare, M. McLaughlin, G C. Micalizio, Tetrahedron 2008, 64, 6831. For cross-coupling of internal alkynes with aromatic imines, see:
    • (2008) Tetrahedron , vol.64 , pp. 6831
    • Shimp, H.L.1    Hare, A.2    McLaughlin, M.3    Micalizio, G.C.4
  • 20
    • 34250890074 scopus 로고    scopus 로고
    • For cross-coupling of internal alkenes with aromatic imines, see: f
    • For cross-coupling of internal alkenes with aromatic imines, see: f) M. Takahashi, G C. Micalizio, J. Am. Chem. Soc. 2007, 129, 7514.
    • (2007) J. Am. Chem. Soc , vol.129 , pp. 7514
    • Takahashi, M.1    Micalizio, G.C.2
  • 21
    • 33947602410 scopus 로고    scopus 로고
    • For a discussion of the burden of protecting groups in the synthesis of complex molecules, see
    • For a discussion of the burden of protecting groups in the synthesis of complex molecules, see: P. S. Baran, T. J. Maimone, J. M. Richter, Nature 2007, 446, 404.
    • (2007) Nature , vol.446 , pp. 404
    • Baran, P.S.1    Maimone, T.J.2    Richter, J.M.3
  • 22
    • 58049220415 scopus 로고    scopus 로고
    • For other examples of bimolecular C-C bond formation by formal metallo-[3,3] rearrangement, see: a allylic alcohol-internal alkyne: J. K. Belardi, G C. Micalizio, J. Am. Chem. Soc. 2008, 130, 16870-16872;
    • For other examples of bimolecular C-C bond formation by formal metallo-[3,3] rearrangement, see: a) allylic alcohol-internal alkyne: J. K. Belardi, G C. Micalizio, J. Am. Chem. Soc. 2008, 130, 16870-16872;
  • 23
    • 37049017393 scopus 로고    scopus 로고
    • allenic alcohol-aromatic imine: F. Kolundzic, G C. Micalizio, J. Am. Chem. Soc. 2007, 129, 15112;
    • b) allenic alcohol-aromatic imine: F. Kolundzic, G C. Micalizio, J. Am. Chem. Soc. 2007, 129, 15112;
  • 24
    • 41349098387 scopus 로고    scopus 로고
    • allenic alcohol-internal alkyne: M. McLaughlin, H. L. Shimp, R. Navarro, Synlett 2008, 735;
    • c) allenic alcohol-internal alkyne: M. McLaughlin, H. L. Shimp, R. Navarro, Synlett 2008, 735;
  • 25
    • 70349954883 scopus 로고    scopus 로고
    • and d allenic alcohol-internal alkyne: see Ref. [6d].
    • and d) allenic alcohol-internal alkyne: see Ref. [6d].
  • 26
    • 70349966078 scopus 로고    scopus 로고
    • For recent examples of imine allylation using preformed allylic silanes, see: a
    • For recent examples of imine allylation using preformed allylic silanes, see: a) J. D. Huber, N. R. Perl, J. L. Leighton, Angew. Chem. 2008, 120, 3079-3081;
    • (2008) Angew. Chem , vol.120 , pp. 3079-3081
    • Huber, J.D.1    Perl, N.R.2    Leighton, J.L.3
  • 30
    • 0041434794 scopus 로고    scopus 로고
    • For recent examples using preformed allylic stannanes, see: d
    • For recent examples using preformed allylic stannanes, see: d)T. Gastner, H. Ishitani, R. Akiyama, S. Kobayashi, Angew. Chem. 2001, 113, 1949;
    • (2001) Angew. Chem , vol.113 , pp. 1949
    • Gastner, T.1    Ishitani, H.2    Akiyama, R.3    Kobayashi, S.4
  • 34
    • 33746657632 scopus 로고    scopus 로고
    • For recent examples employing preformed allylic boron reagents, see: g
    • For recent examples employing preformed allylic boron reagents, see: g) T R. Wu, J. M. Chong, J. Am. Chem. Soc. 2006, 128, 9646;
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 9646
    • Wu, T.R.1    Chong, J.M.2
  • 39
    • 35948929153 scopus 로고    scopus 로고
    • For recent examples using in situ generated allylic boron reagents, see: k
    • For recent examples using in situ generated allylic boron reagents, see: k) N. Selander, A. Kipke, S. Sebelius, K. J. Szabo, J. Am. Chem. Soc. 2007, 129, 13723;
    • (2007) J. Am. Chem. Soc , vol.129 , pp. 13723
    • Selander, N.1    Kipke, A.2    Sebelius, S.3    Szabo, K.J.4
  • 41
    • 0242497940 scopus 로고    scopus 로고
    • For examples using allylic palladium reagents generated in situ, see: m
    • For examples using allylic palladium reagents generated in situ, see: m) R. A. Fernandes, A. Stimac, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 14133;
    • (2003) J. Am. Chem. Soc , vol.125 , pp. 14133
    • Fernandes, R.A.1    Stimac, A.2    Yamamoto, Y.3
  • 43
    • 0001114287 scopus 로고    scopus 로고
    • For recent examples employing allylic zinc reagents, see: o
    • For recent examples employing allylic zinc reagents, see: o) P. Wipf, C. Kendall, Org. Lett. 2001, 3, 2773;
    • (2001) Org. Lett , vol.3 , pp. 2773
    • Wipf, P.1    Kendall, C.2
  • 45
    • 0029582657 scopus 로고
    • For a recent example using allylic titanium reagents generated in situ, see: q
    • For a recent example using allylic titanium reagents generated in situ, see: q) Y. Gao, F. Sato, J. Org. Chem. 1995, 60, 8136.
    • (1995) J. Org. Chem , vol.60 , pp. 8136
    • Gao, Y.1    Sato, F.2
  • 46
    • 33746217459 scopus 로고    scopus 로고
    • For reviews on the synthesis of homoallylic amines via allylic metal reagents, see: r
    • For reviews on the synthesis of homoallylic amines via allylic metal reagents, see: r) P. V Ramachandran, T E. Burghardt, Pure Appl. Chem. 2006, 78, 1397;
    • (2006) Pure Appl. Chem , vol.78 , pp. 1397
    • Ramachandran, P.V.1    Burghardt, T.E.2
  • 49
    • 0001089557 scopus 로고    scopus 로고
    • Prenylation of imines has represented a significant challenge in organic chemistry. For a route to products like 5 based on the reactivity of allylic barium reagents, see: A. Yanagisawa, K. Ogasawara, K. Yasue, H. Yamamoto, J. Chem. Soc. Chem. Commun. 1996, 367.
    • Prenylation of imines has represented a significant challenge in organic chemistry. For a route to products like 5 based on the reactivity of allylic barium reagents, see: A. Yanagisawa, K. Ogasawara, K. Yasue, H. Yamamoto, J. Chem. Soc. Chem. Commun. 1996, 367.
  • 50
    • 70349952245 scopus 로고    scopus 로고
    • The relative stereochemistry of 48 is proposed based on the model depicted in Figure 1 and is supported by observations made in related titanium-mediated reductive cross-coupling reactions of stereodefined allylic alcohols. For additional information, see: Ref. [7].
    • The relative stereochemistry of 48 is proposed based on the model depicted in Figure 1 and is supported by observations made in related titanium-mediated reductive cross-coupling reactions of stereodefined allylic alcohols. For additional information, see: Ref. [7].
  • 51
    • 33645897192 scopus 로고    scopus 로고
    • The empirical model described is based on the minimization of A-1,2 strain in a formal metallo-[3,3] rearrangement process, and does not account for the geometry at titanium. The proposed empirical model does not exclude a mechanism that follows from directed carbometalation and syn elimination. For a review of allylic strain as a principle for stereochemical control, see: R. W. Hoffmann, Chem. Rev. 1989, 89, 1841.
    • The empirical model described is based on the minimization of A-1,2 strain in a formal metallo-[3,3] rearrangement process, and does not account for the geometry at titanium. The proposed empirical model does not exclude a mechanism that follows from directed carbometalation and syn elimination. For a review of allylic strain as a principle for stereochemical control, see: R. W. Hoffmann, Chem. Rev. 1989, 89, 1841.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.