-
1
-
-
0026519591
-
Long-term fluctuation of the visual field in glaucoma
-
Boeglin RJ, Caprioli J, Zulauf M (1992) Long-term fluctuation of the visual field in glaucoma. Am J Ophthalmol 113:396-400
-
(1992)
Am J Ophthalmol
, vol.113
, pp. 396-400
-
-
Boeglin, R.J.1
Caprioli, J.2
Zulauf, M.3
-
3
-
-
0021368384
-
Differential light threshold. Short and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma
-
Flammer J, Drance SM, Zulauf M (1984) Differential light threshold. Short and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. Arch Ophthalmol 102:704
-
(1984)
Arch Ophthalmol
, vol.102
, pp. 704
-
-
Flammer, J.1
Drance, S.M.2
Zulauf, M.3
-
4
-
-
29544441195
-
Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease
-
doi: 10.1016/j.ajo.2005.07.044
-
Mills RP, Budenz DL, Lee PP, Noecker RJ, Walt JG et al (2006) Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease. Am J Ophthalmol 141:24-30. doi: 10.1016/j.ajo.2005.07.044
-
(2006)
Am J Ophthalmol
, vol.141
, pp. 24-30
-
-
Mills, R.P.1
Budenz, D.L.2
Lee, P.P.3
Noecker, R.J.4
Walt, J.G.5
-
9
-
-
0036138639
-
Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
-
Goldbaum MH, Sample PA, Chan K, Williams J, Lee T-W, Blumenthal E, Girkin CA, Zangwill LM, Bowd C, Sejnowski T, Weinreb RN (2002) Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 43:162-169
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 162-169
-
-
Goldbaum, M.H.1
Sample, P.A.2
Chan, K.3
Williams, J.4
Lee, T.-W.5
Blumenthal, E.6
Girkin, C.A.7
Zangwill, L.M.8
Bowd, C.9
Sejnowski, T.10
Weinreb, R.N.11
-
10
-
-
0024508247
-
The cumulative defect curve: Separation of local and diffuse components of visual field damage
-
doi: 10.1007/BF02169816
-
Bebie H, Flammer J, Bebie T (1989) The cumulative defect curve: separation of local and diffuse components of visual field damage. Graefes Arch Clin Exp Ophthalmol 227:9-12. doi: 10.1007/BF02169816
-
(1989)
Graefes Arch Clin Exp Ophthalmol
, vol.227
, pp. 9-12
-
-
Bebie, H.1
Flammer, J.2
Bebie, T.3
-
11
-
-
0032140934
-
Bias and variance of validation methods for function approximation neural networks under conditions of sparse data, IEEE Trans
-
Twomey JM, Smith AE (1999) Bias and variance of validation methods for function approximation neural networks under conditions of sparse data, IEEE Trans. Systems, Man, and Cybernetics. Part C Appl Rev 28:417-430
-
(1999)
Systems, Man, and Cybernetics. Part C Appl Rev
, vol.28
, pp. 417-430
-
-
Twomey, J.M.1
Smith, A.E.2
-
13
-
-
0022447339
-
The concept of visual field indices
-
doi: 10.1007/BF02173350
-
Flammer J (1986) The concept of visual field indices. Graefes Arch Clin Exp Ophthalmol 224:389-392. doi: 10.1007/BF02173350
-
(1986)
Graefes Arch Clin Exp Ophthalmol
, vol.224
, pp. 389-392
-
-
Flammer, J.1
-
15
-
-
0026717105
-
Galucoma hemifield test
-
Asman P, Heijl A (1992) Galucoma hemifield test. Arch Ophthalmol 110:812-819
-
(1992)
Arch Ophthalmol
, vol.110
, pp. 812-819
-
-
Asman, P.1
Heijl, A.2
-
16
-
-
0030945506
-
Value of logistic discriminant analysis for interpreting initial visual field defects
-
Anton A, Maquet JA, Mayo A, Tapia J, Pastor JC (1997) Value of logistic discriminant analysis for interpreting initial visual field defects. Ophthalmology 104(3):525-531
-
(1997)
Ophthalmology
, vol.104
, Issue.3
, pp. 525-531
-
-
Anton, A.1
Maquet, J.A.2
Mayo, A.3
Tapia, J.4
Pastor, J.C.5
-
17
-
-
0028135264
-
Interpretation of automated perimetry for glaucoma by neural network
-
Goldbaum MH, Sample PA, White H et al (1994) Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci 35:3362-3373
-
(1994)
Invest Ophthalmol Vis Sci
, vol.35
, pp. 3362-3373
-
-
Goldbaum, M.H.1
Sample, P.A.2
White, H.3
-
18
-
-
0029866233
-
Neural networks to identify glaucoma with structural and functional measurements
-
Brigatti L, Hoffman D, Caprioli J (1996) Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol 121:511-521
-
(1996)
Am J Ophthalmol
, vol.121
, pp. 511-521
-
-
Brigatti, L.1
Hoffman, D.2
Caprioli, J.3
-
19
-
-
0030958701
-
Automatic detection of glaucomatous visual field progression with neural networks
-
Brigatti L, Nouri-Mahdavi K, Weitzman M, Caprioli J (1997) Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol 115:725-728
-
(1997)
Arch Ophthalmol
, vol.115
, pp. 725-728
-
-
Brigatti, L.1
Nouri-Mahdavi, K.2
Weitzman, M.3
Caprioli, J.4
-
20
-
-
0033071624
-
Neural Networks and Visual Field Analysis: How Do They Compare with Other Algorithms?
-
doi: 10.1097/00061198-199902000-00014
-
Lietman T, Eng J, Katz J, Quigley HA (1999) Neural Networks and Visual Field Analysis: How Do They Compare with Other Algorithms? J Glaucoma 8:77-80. doi: 10.1097/00061198-199902000-00014
-
(1999)
J Glaucoma
, vol.8
, pp. 77-80
-
-
Lietman, T.1
Eng, J.2
Katz, J.3
Quigley, H.A.4
-
21
-
-
0033983343
-
Situation assessment of glaucoma using a hybrid fuzzy neural network
-
doi: 10.1109/51.816247
-
Zahlmann G, Scherf M, Wegner A, Obermaier M, Mertz M (2000) Situation assessment of glaucoma using a hybrid fuzzy neural network. IEEE Trans Eng Med Bio Mag 19:84-91. doi: 10.1109/51.816247
-
(2000)
IEEE Trans Eng Med Bio Mag
, vol.19
, pp. 84-91
-
-
Zahlmann, G.1
Scherf, M.2
Wegner, A.3
Obermaier, M.4
Mertz, M.5
-
22
-
-
0036721272
-
Comaprison of machine learning and traditional classifiers in glaucoma diagnosis
-
doi: 10.1109/TBME.2002.802012
-
Chan K, Lee T-W, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ (2002) Comaprison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng 49:963-973. doi: 10.1109/ TBME.2002.802012
-
(2002)
IEEE Trans Biomed Eng
, vol.49
, pp. 963-973
-
-
Chan, K.1
Lee, T.-W.2
Sample, P.A.3
Goldbaum, M.H.4
Weinreb, R.N.5
Sejnowski, T.J.6
-
23
-
-
0036325049
-
Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
-
Sample PA, Goldbaum MH, Chan K, Boden C, Lee T-W et al (2002) Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci 43:2660-2665
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 2660-2665
-
-
Sample, P.A.1
Goldbaum, M.H.2
Chan, K.3
Boden, C.4
Lee, T.-W.5
-
24
-
-
0030471079
-
Clinical use of a new method for visual field damage classification in glaucoma
-
Brusini P (1996) Clinical use of a new method for visual field damage classification in glaucoma. Eur J Ophthalmol 6:402-407
-
(1996)
Eur J Ophthalmol
, vol.6
, pp. 402-407
-
-
Brusini, P.1
-
25
-
-
30344452265
-
Enhanced dlaucoma staging system (GSS 2) for classifying functional damage in glaucoma
-
doi: 10.1097/01.ijg.0000195932.48288.97
-
Brusini P, Filacorda S (2006) Enhanced dlaucoma staging system (GSS 2) for classifying functional damage in glaucoma. J Glaucoma 15:40-46. doi: 10.1097/01.ijg.0000195932.48288.97
-
(2006)
J Glaucoma
, vol.15
, pp. 40-46
-
-
Brusini, P.1
Filacorda, S.2
-
26
-
-
0037216716
-
Neural networks to identify glaucomatous visual field progression
-
doi: 10.1016/S0002-9394(02)01836-6
-
Lin A, Hoffman D, Gaasterland DE, Capprioli J (2003) Neural networks to identify glaucomatous visual field progression. Am J Ophthalmol 135:49-54. doi: 10.1016/S0002-9394(02)01836-6
-
(2003)
Am J Ophthalmol
, vol.135
, pp. 49-54
-
-
Lin, A.1
Hoffman, D.2
Gaasterland, D.E.3
Capprioli, J.4
|