메뉴 건너뛰기




Volumn , Issue , 2009, Pages 308-315

Performance issues in parallelizing data-intensive applications on a multi-core cluster

Author keywords

[No Author keywords available]

Indexed keywords

DATA ANALYSIS; DATA MINING APPLICATIONS; DATA-INTENSIVE APPLICATION; MULTI CORE; MULTI-CORE CLUSTER; PARALLEL EXECUTIONS; PARALLELIZATIONS; PARALLELIZING; PERFORMANCE ISSUES; PERFORMANCE STUDY; PROGRAMMABILITY; RUNTIME SYSTEMS; RUNTIMES; SHARED MEMORIES;

EID: 70349729825     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCGRID.2009.83     Document Type: Conference Paper
Times cited : (15)

References (20)
  • 2
    • 52949145167 scopus 로고    scopus 로고
    • Data-Intensive Supercomputing: The Case for DISC
    • Technical Report CMU-CS-07-128, School of Computer Science, Carnegie Mellon University
    • R. E. Bryant. Data-Intensive Supercomputing: The Case for DISC. Technical Report CMU-CS-07-128, School of Computer Science, Carnegie Mellon University, 2007.
    • (2007)
    • Bryant, R.E.1
  • 4
    • 56749101383 scopus 로고    scopus 로고
    • The potential of cell broadband engine for data mining
    • G. Buehrer and S. Parthasarathy. The potential of cell broadband engine for data mining. ftp://ftp.cse.ohio-state.edu/pub/techreport/ 2007/TR22.pdf, 2007.
    • (2007)
    • Buehrer, G.1    Parthasarathy, S.2
  • 7
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (autoclass): Theory and practice
    • AAAI Press, MIT Press
    • P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory and practice. In Advanced in Knowledge Discovery and Data Mining, pages 61 - 83. AAAI Press / MIT Press, 1996.
    • (1996) Advanced in Knowledge Discovery and Data Mining , pp. 61-83
    • Cheeseman, P.1    Stutz, J.2
  • 8
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, pages 137-150, 2004.
    • (2004) OSDI , pp. 137-150
    • Dean, J.1    Ghemawat, S.2
  • 14
    • 1542326294 scopus 로고    scopus 로고
    • Shared Memory Parallelization of Data Mining Algorithms: Techniques, Programming Interface, and Performance
    • Apr
    • R. Jin and G. Agrawal. Shared Memory Parallelization of Data Mining Algorithms: Techniques, Programming Interface, and Performance. In Proceedings of the second SIAM conference on Data Mining, Apr. 2002.
    • (2002) Proceedings of the second SIAM conference on Data Mining
    • Jin, R.1    Agrawal, G.2
  • 15
    • 17444402472 scopus 로고    scopus 로고
    • Shared Memory Parallelization of Data Mining Algorithms: Techniques, Programming Interface, and Performance
    • R. Jin and G. Agrawal. Shared Memory Parallelization of Data Mining Algorithms: Techniques, Programming Interface, and Performance. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering (TKDE)
    • Jin, R.1    Agrawal, G.2
  • 17
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multi-disciplinary survey
    • S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery, 2(4):345-389, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 345-389
    • Murthy, S.K.1
  • 20
    • 34547679939 scopus 로고    scopus 로고
    • C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In In the proceedings of International Symposium on High Performance Computer Architecture, 2007, pages 13-24, 2007.
    • C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In In the proceedings of International Symposium on High Performance Computer Architecture, 2007, pages 13-24, 2007.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.