메뉴 건너뛰기




Volumn 1, Issue , 2009, Pages 506-513

An unsupervised learning based approach for unexpected event detection

Author keywords

Kernel machine; Motion learning; Video surveillance

Indexed keywords

IMAGE BLOCKS; KERNEL MACHINE; LIKELIHOOD FUNCTIONS; MOTION LEARNING; PROBABILISTIC FRAMEWORK; REAL-TIME FRAME RATES; SPARSE VECTORS; TRAFFIC EVENT; UN-CALIBRATED CAMERA; UNEXPECTED EVENTS; VIDEO SEQUENCES; VIDEO SURVEILLANCE;

EID: 70349687434     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (23)
  • 3
    • 0029772518 scopus 로고    scopus 로고
    • The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields
    • Black, M. J. and Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding (CVIU), 63(1):75-104.
    • (1996) Computer Vision and Image Understanding (CVIU) , vol.63 , Issue.1 , pp. 75-104
    • Black, M.J.1    Anandan, P.2
  • 5
    • 33845582996 scopus 로고    scopus 로고
    • Brostow, G. j. and Cipolla, R. (2006). Unsupervised bayesian detection of independant motion in crowds. In Computer Vision and Pattern Recognition (CVPR).
    • Brostow, G. j. and Cipolla, R. (2006). Unsupervised bayesian detection of independant motion in crowds. In Computer Vision and Pattern Recognition (CVPR).
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 11
    • 45349101870 scopus 로고    scopus 로고
    • Sequential kernel density approximation and its application to real-time visual tracking
    • Han, B., Comaniciu, D., Zhu, Y., and Davis, L. S. (2008). Sequential kernel density approximation and its application to real-time visual tracking. Pattern Analysis and Machine Intelligence, 30:1186-1197.
    • (2008) Pattern Analysis and Machine Intelligence , vol.30 , pp. 1186-1197
    • Han, B.1    Comaniciu, D.2    Zhu, Y.3    Davis, L.S.4
  • 12
    • 0001466773 scopus 로고
    • A combined corner and edge detector
    • Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Alvey Vision Conference, pages 147-151.
    • (1988) Alvey Vision Conference , pp. 147-151
    • Harris, C.1    Stephens, M.2
  • 15
    • 70349686147 scopus 로고    scopus 로고
    • Fast detection of independent motion in crowds guided by supervised learning
    • Li, Y. and Ai, H. (2007). Fast detection of independent motion in crowds guided by supervised learning. In International Conference on Image Processing (ICIP).
    • (2007) International Conference on Image Processing (ICIP)
    • Li, Y.1    Ai, H.2
  • 21
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Reasearch 1.
    • (2001) Journal of Machine Learning Reasearch , vol.1
    • Tipping, M.E.1
  • 22
    • 33746377916 scopus 로고    scopus 로고
    • Velastin, S. A., Boghossian, B. A., and Vicencio-Silva, M. A. (2006). A motion-based image processing system for detecting potentielly dangerous situations in underground railway stations. Transportation Research Part C: Emerging Technologies, 14.
    • Velastin, S. A., Boghossian, B. A., and Vicencio-Silva, M. A. (2006). A motion-based image processing system for detecting potentielly dangerous situations in underground railway stations. Transportation Research Part C: Emerging Technologies, 14.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.