메뉴 건너뛰기




Volumn , Issue , 2009, Pages 303-306

Band selection based hyperspectral unmixing

Author keywords

[No Author keywords available]

Indexed keywords

AFFINITY PROPAGATION; BAND SELECTION; COMPUTATIONAL LOADS; CRITICAL INFORMATION; DIMENSIONALITY REDUCTION; ENDMEMBERS; HYPERSPECTRAL IMAGERY; HYPERSPECTRAL UNMIXING; MIXED PIXEL; NONNEGATIVE MATRIX FACTORIZATION; PRE-PROCESSING STEP; SPECTRAL BAND; UNMIXING;

EID: 70349667636     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IST.2009.5071654     Document Type: Conference Paper
Times cited : (2)

References (17)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, 2002.
    • (2002) IEEE Signal Process. Mag , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G. A. Shaw and H. Burke, "Spectral imaging for remote sensing," Lincoln Lab. J., vol. 14, no. 1, pp. 3-28, 2003.
    • (2003) Lincoln Lab. J , vol.14 , Issue.1 , pp. 3-28
    • Shaw, G.A.1    Burke, H.2
  • 4
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J., vol. 14, no. 1, pp. 55-73, 2003.
    • (2003) Lincoln Lab. J , vol.14 , Issue.1 , pp. 55-73
    • Keshava, N.1
  • 5
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Conf. Imaging Spectrometry V, 1999, pp. 266-275.
    • (1999) Proc. SPIE Conf. Imaging Spectrometry V , pp. 266-275
    • Winter, M.E.1
  • 6
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 7
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • in press
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., in press.
    • IEEE Trans. Geosci. Remote Sens
    • Jia, S.1    Qian, Y.2
  • 9
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Jul
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 10
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • Jun
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575- 1585, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 11
    • 36348942491 scopus 로고    scopus 로고
    • Clusteringbased hyperspectral band selection using information measures
    • Dec
    • A. Martinez-usó, F. Pla, J. M. Sotoca, and P. Garćia- sevilla, "Clusteringbased hyperspectral band selection using information measures," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4158-4171, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 4158-4171
    • Martinez-usó, A.1    Pla, F.2    Sotoca, J.M.3    Garćia- sevilla, P.4
  • 12
    • 0442289065 scopus 로고    scopus 로고
    • Survey of clustering data mining techniques
    • Accrue Software, Inc, Tech. Rep
    • P. Berkhin, "Survey of clustering data mining techniques," Accrue Software, Inc., Tech. Rep., 2002.
    • (2002)
    • Berkhin, P.1
  • 13
    • 67549146778 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • Dec
    • S. Jia, Y. Qian, and Z. Ji, "Band selection for hyperspectral imagery using affinity propagation," in Proc. DICTA, Dec. 2008, pp. 137-141.
    • (2008) Proc. DICTA , pp. 137-141
    • Jia, S.1    Qian, Y.2    Ji, Z.3
  • 15
    • 31544468696 scopus 로고    scopus 로고
    • A. P.-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R. D. P.- Marqui, Nonsmooth nonnegative matrix factorization (nsNMF), IEEE Trans. Pattern Anal. Mach. Intell., 28, no. 3, pp. 403-415, March 2006.
    • A. P.-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R. D. P.- Marqui, "Nonsmooth nonnegative matrix factorization (nsNMF)," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 3, pp. 403-415, March 2006.
  • 16
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 17
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • S. Jia and Y. Qian, "Spectral and spatial complexity-based hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867- 3879, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.