-
1
-
-
0001439584
-
The stability of numerical boundary treatments for compact high‐order finite‐difference schemes
-
1 M. H. Carpenter, D. Gottlieb, and S. Abarbanel, The stability of numerical boundary treatments for compact high‐order finite‐difference schemes, J Comput Phy 108 (1993), 272–295.
-
(1993)
J Comput Phy
, vol.108
, pp. 272-295
-
-
Carpenter, M.H.1
Gottlieb, D.2
Abarbanel, S.3
-
2
-
-
0008466688
-
The operator compact implicit method for parabolic equations
-
2 M. Ciment, S. H. Leventhal, and B. C. Weinberg, The operator compact implicit method for parabolic equations, J Comput Phy 28 (1978), 135–166.
-
(1978)
J Comput Phy
, vol.28
, pp. 135-166
-
-
Ciment, M.1
Leventhal, S.H.2
Weinberg, B.C.3
-
3
-
-
0036495593
-
Compact ADI method for solving parabolic differential equations
-
3 W. Z. Dai and R. Nassar, Compact ADI method for solving parabolic differential equations, Numer Methods Partial Differential Eq 18 (2002), 129–142.
-
(2002)
Numer Methods Partial Differential Eq
, vol.18
, pp. 129-142
-
-
Dai, W.Z.1
Nassar, R.2
-
4
-
-
0001295744
-
A compact finite difference scheme for solving a three‐dimensional heat transport equation in a thin film
-
4 W. Z. Dai and R. Nassar, A compact finite difference scheme for solving a three‐dimensional heat transport equation in a thin film, Numer Methods Partial Differential Eq 16 (2000), 441–458.
-
(2000)
Numer Methods Partial Differential Eq
, vol.16
, pp. 441-458
-
-
Dai, W.Z.1
Nassar, R.2
-
5
-
-
0035879146
-
A compact finite‐difference scheme for solving a one‐dimensional heat transport equation at the microscale
-
5 W. Z. Dai and R. Nassar, A compact finite‐difference scheme for solving a one‐dimensional heat transport equation at the microscale, J Comput Appl Math 132 (2001), 431–441.
-
(2001)
J Comput Appl Math
, vol.132
, pp. 431-441
-
-
Dai, W.Z.1
Nassar, R.2
-
6
-
-
0000105935
-
Fourth‐order difference methods for hyperbolic IBVPs
-
6 B. Gustafsson and P. Olsson, Fourth‐order difference methods for hyperbolic IBVPs, J Comput Phy 117 (1995), 300–317.
-
(1995)
J Comput Phy
, vol.117
, pp. 300-317
-
-
Gustafsson, B.1
Olsson, P.2
-
7
-
-
33847791707
-
High‐order difference schemes for 2D elliptic and parabolic problems with mixed derivatives
-
7 S. Karaa, High‐order difference schemes for 2D elliptic and parabolic problems with mixed derivatives, Numer Methods Partial Differential Eq 23 (2007), 366–378.
-
(2007)
Numer Methods Partial Differential Eq
, vol.23
, pp. 366-378
-
-
Karaa, S.1
-
8
-
-
33745799513
-
A high‐order compact ADI method for solving three‐dimensional unsteady convection‐diffusion problems
-
8 S. Karaa, A high‐order compact ADI method for solving three‐dimensional unsteady convection‐diffusion problems, Numer Methods Partial Differential Eq 22 (2006), 983–993.
-
(2006)
Numer Methods Partial Differential Eq
, vol.22
, pp. 983-993
-
-
Karaa, S.1
-
9
-
-
0042696191
-
A compact fourth‐order finite difference scheme for unsteady viscous incompressible flows
-
9 M. Li and T. Tang, A compact fourth‐order finite difference scheme for unsteady viscous incompressible flows, J Scientific Comput 16 (2001), 29–45.
-
(2001)
J Scientific Comput
, vol.16
, pp. 29-45
-
-
Li, M.1
Tang, T.2
-
10
-
-
33646260213
-
A fourth‐order compact algorithm for nonlinear reaction‐diffusion equations with Neumann boundary conditions
-
10 W. Y. Liao, J. P. Zhu, and A. Q. M. Khaliq, A fourth‐order compact algorithm for nonlinear reaction‐diffusion equations with Neumann boundary conditions, Numer Methods Partial Differential Eq 22 (2006), 600–616.
-
(2006)
Numer Methods Partial Differential Eq
, vol.22
, pp. 600-616
-
-
Liao, W.Y.1
Zhu, J.P.2
Khaliq, A.Q.M.3
-
11
-
-
38249003776
-
A highly accurate finite‐difference scheme for a boussinesq‐type equation
-
11 A. Mohsen, H. El‐Zoheiry, and L. Iskandar, A highly accurate finite‐difference scheme for a boussinesq‐type equation, Appl Math Comput 55 (1993), 201–212.
-
(1993)
Appl Math Comput
, vol.55
, pp. 201-212
-
-
Mohsen, A.1
El‐Zoheiry, H.2
Iskandar, L.3
-
12
-
-
2342520875
-
Fourth order convergence of compact finite difference solver for 2D incompressible flow
-
12 C. Wang and J. G. Liu, Fourth order convergence of compact finite difference solver for 2D incompressible flow, Commun Appl Anal 7 (2003), 171–191.
-
(2003)
Commun Appl Anal
, vol.7
, pp. 171-191
-
-
Wang, C.1
Liu, J.G.2
-
13
-
-
49349130999
-
An implicit, compact, finite difference method to solve hyperbolic equations
-
13 H. J. Wirz, F. De Schutter, and A. Turi, An implicit, compact, finite difference method to solve hyperbolic equations, Math Comput Simu 19 (1977), 241–261.
-
(1977)
Math Comput Simu
, vol.19
, pp. 241-261
-
-
Wirz, H.J.1
De Schutter, F.2
Turi, A.3
-
14
-
-
0242371968
-
A high‐order compact boundary value method for solving one‐dimensional heat equations
-
14 H. W. Sun and J. Zhang, A high‐order compact boundary value method for solving one‐dimensional heat equations, Numer Methods Partial Differential Eq 19 (2003), 846–857.
-
(2003)
Numer Methods Partial Differential Eq
, vol.19
, pp. 846-857
-
-
Sun, H.W.1
Zhang, J.2
-
15
-
-
0035498905
-
An unconditionally stable and O(τ2 + h4) order L∞ convergent difference scheme for linear parabolic equations with variable coefficients
-
15 Z. Z. Sun, An unconditionally stable and O (τ 2 + h 4) order L ∞ convergent difference scheme for linear parabolic equations with variable coefficients, Numer Methods Partial Differential Eq 17 (2001), 619–631.
-
(2001)
Numer Methods Partial Differential Eq
, vol.17
, pp. 619-631
-
-
Sun, Z.Z.1
-
16
-
-
34548524853
-
Fourth‐order compact schemes of a heat conduction problem with Neumann boundary conditions
-
16 J. Zhao, W. Z. Dai, and T. C. Niu, Fourth‐order compact schemes of a heat conduction problem with Neumann boundary conditions, Numer Methods Partial Differential Eq 23 (2007), 949–959.
-
(2007)
Numer Methods Partial Differential Eq
, vol.23
, pp. 949-959
-
-
Zhao, J.1
Dai, W.Z.2
Niu, T.C.3
-
17
-
-
38049120167
-
Fourth‐order compact schemes for solving multidimensional heat problems with Neumann boundary conditions
-
17 J. Zhao, W. Z. Dai, and S. Y. Zhang, Fourth‐order compact schemes for solving multidimensional heat problems with Neumann boundary conditions, Numer Methods Partial Differential Eq 24 (2008), 165–178.
-
(2008)
Numer Methods Partial Differential Eq
, vol.24
, pp. 165-178
-
-
Zhao, J.1
Dai, W.Z.2
Zhang, S.Y.3
-
18
-
-
0003881703
-
Difference methods for elliptic equations
-
18 A. A. Samarskii and V. B. Andreev, Difference methods for elliptic equations, Nauka, Moscow, 1976.
-
(1976)
-
-
Samarskii, A.A.1
Andreev, V.B.2
|