메뉴 건너뛰기




Volumn 25, Issue 6, 2009, Pages 1320-1341

Compact difference schemes for heat equation with Neumann boundary conditions

Author keywords

Compact scheme; Convergence; Heat conduction; Neumann boundary value; Parabolic equation; Stability

Indexed keywords


EID: 70349662642     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20402     Document Type: Article
Times cited : (79)

References (18)
  • 1
    • 0001439584 scopus 로고
    • The stability of numerical boundary treatments for compact high‐order finite‐difference schemes
    • 1 M. H. Carpenter, D. Gottlieb, and S. Abarbanel, The stability of numerical boundary treatments for compact high‐order finite‐difference schemes, J Comput Phy 108 (1993), 272–295.
    • (1993) J Comput Phy , vol.108 , pp. 272-295
    • Carpenter, M.H.1    Gottlieb, D.2    Abarbanel, S.3
  • 2
    • 0008466688 scopus 로고
    • The operator compact implicit method for parabolic equations
    • 2 M. Ciment, S. H. Leventhal, and B. C. Weinberg, The operator compact implicit method for parabolic equations, J Comput Phy 28 (1978), 135–166.
    • (1978) J Comput Phy , vol.28 , pp. 135-166
    • Ciment, M.1    Leventhal, S.H.2    Weinberg, B.C.3
  • 3
    • 0036495593 scopus 로고    scopus 로고
    • Compact ADI method for solving parabolic differential equations
    • 3 W. Z. Dai and R. Nassar, Compact ADI method for solving parabolic differential equations, Numer Methods Partial Differential Eq 18 (2002), 129–142.
    • (2002) Numer Methods Partial Differential Eq , vol.18 , pp. 129-142
    • Dai, W.Z.1    Nassar, R.2
  • 4
    • 0001295744 scopus 로고    scopus 로고
    • A compact finite difference scheme for solving a three‐dimensional heat transport equation in a thin film
    • 4 W. Z. Dai and R. Nassar, A compact finite difference scheme for solving a three‐dimensional heat transport equation in a thin film, Numer Methods Partial Differential Eq 16 (2000), 441–458.
    • (2000) Numer Methods Partial Differential Eq , vol.16 , pp. 441-458
    • Dai, W.Z.1    Nassar, R.2
  • 5
    • 0035879146 scopus 로고    scopus 로고
    • A compact finite‐difference scheme for solving a one‐dimensional heat transport equation at the microscale
    • 5 W. Z. Dai and R. Nassar, A compact finite‐difference scheme for solving a one‐dimensional heat transport equation at the microscale, J Comput Appl Math 132 (2001), 431–441.
    • (2001) J Comput Appl Math , vol.132 , pp. 431-441
    • Dai, W.Z.1    Nassar, R.2
  • 6
    • 0000105935 scopus 로고
    • Fourth‐order difference methods for hyperbolic IBVPs
    • 6 B. Gustafsson and P. Olsson, Fourth‐order difference methods for hyperbolic IBVPs, J Comput Phy 117 (1995), 300–317.
    • (1995) J Comput Phy , vol.117 , pp. 300-317
    • Gustafsson, B.1    Olsson, P.2
  • 7
    • 33847791707 scopus 로고    scopus 로고
    • High‐order difference schemes for 2D elliptic and parabolic problems with mixed derivatives
    • 7 S. Karaa, High‐order difference schemes for 2D elliptic and parabolic problems with mixed derivatives, Numer Methods Partial Differential Eq 23 (2007), 366–378.
    • (2007) Numer Methods Partial Differential Eq , vol.23 , pp. 366-378
    • Karaa, S.1
  • 8
    • 33745799513 scopus 로고    scopus 로고
    • A high‐order compact ADI method for solving three‐dimensional unsteady convection‐diffusion problems
    • 8 S. Karaa, A high‐order compact ADI method for solving three‐dimensional unsteady convection‐diffusion problems, Numer Methods Partial Differential Eq 22 (2006), 983–993.
    • (2006) Numer Methods Partial Differential Eq , vol.22 , pp. 983-993
    • Karaa, S.1
  • 9
    • 0042696191 scopus 로고    scopus 로고
    • A compact fourth‐order finite difference scheme for unsteady viscous incompressible flows
    • 9 M. Li and T. Tang, A compact fourth‐order finite difference scheme for unsteady viscous incompressible flows, J Scientific Comput 16 (2001), 29–45.
    • (2001) J Scientific Comput , vol.16 , pp. 29-45
    • Li, M.1    Tang, T.2
  • 10
    • 33646260213 scopus 로고    scopus 로고
    • A fourth‐order compact algorithm for nonlinear reaction‐diffusion equations with Neumann boundary conditions
    • 10 W. Y. Liao, J. P. Zhu, and A. Q. M. Khaliq, A fourth‐order compact algorithm for nonlinear reaction‐diffusion equations with Neumann boundary conditions, Numer Methods Partial Differential Eq 22 (2006), 600–616.
    • (2006) Numer Methods Partial Differential Eq , vol.22 , pp. 600-616
    • Liao, W.Y.1    Zhu, J.P.2    Khaliq, A.Q.M.3
  • 11
    • 38249003776 scopus 로고
    • A highly accurate finite‐difference scheme for a boussinesq‐type equation
    • 11 A. Mohsen, H. El‐Zoheiry, and L. Iskandar, A highly accurate finite‐difference scheme for a boussinesq‐type equation, Appl Math Comput 55 (1993), 201–212.
    • (1993) Appl Math Comput , vol.55 , pp. 201-212
    • Mohsen, A.1    El‐Zoheiry, H.2    Iskandar, L.3
  • 12
    • 2342520875 scopus 로고    scopus 로고
    • Fourth order convergence of compact finite difference solver for 2D incompressible flow
    • 12 C. Wang and J. G. Liu, Fourth order convergence of compact finite difference solver for 2D incompressible flow, Commun Appl Anal 7 (2003), 171–191.
    • (2003) Commun Appl Anal , vol.7 , pp. 171-191
    • Wang, C.1    Liu, J.G.2
  • 13
    • 49349130999 scopus 로고
    • An implicit, compact, finite difference method to solve hyperbolic equations
    • 13 H. J. Wirz, F. De Schutter, and A. Turi, An implicit, compact, finite difference method to solve hyperbolic equations, Math Comput Simu 19 (1977), 241–261.
    • (1977) Math Comput Simu , vol.19 , pp. 241-261
    • Wirz, H.J.1    De Schutter, F.2    Turi, A.3
  • 14
    • 0242371968 scopus 로고    scopus 로고
    • A high‐order compact boundary value method for solving one‐dimensional heat equations
    • 14 H. W. Sun and J. Zhang, A high‐order compact boundary value method for solving one‐dimensional heat equations, Numer Methods Partial Differential Eq 19 (2003), 846–857.
    • (2003) Numer Methods Partial Differential Eq , vol.19 , pp. 846-857
    • Sun, H.W.1    Zhang, J.2
  • 15
    • 0035498905 scopus 로고    scopus 로고
    • An unconditionally stable and O(τ2 + h4) order L∞ convergent difference scheme for linear parabolic equations with variable coefficients
    • 15 Z. Z. Sun, An unconditionally stable and O (τ 2 + h 4) order L ∞ convergent difference scheme for linear parabolic equations with variable coefficients, Numer Methods Partial Differential Eq 17 (2001), 619–631.
    • (2001) Numer Methods Partial Differential Eq , vol.17 , pp. 619-631
    • Sun, Z.Z.1
  • 16
    • 34548524853 scopus 로고    scopus 로고
    • Fourth‐order compact schemes of a heat conduction problem with Neumann boundary conditions
    • 16 J. Zhao, W. Z. Dai, and T. C. Niu, Fourth‐order compact schemes of a heat conduction problem with Neumann boundary conditions, Numer Methods Partial Differential Eq 23 (2007), 949–959.
    • (2007) Numer Methods Partial Differential Eq , vol.23 , pp. 949-959
    • Zhao, J.1    Dai, W.Z.2    Niu, T.C.3
  • 17
    • 38049120167 scopus 로고    scopus 로고
    • Fourth‐order compact schemes for solving multidimensional heat problems with Neumann boundary conditions
    • 17 J. Zhao, W. Z. Dai, and S. Y. Zhang, Fourth‐order compact schemes for solving multidimensional heat problems with Neumann boundary conditions, Numer Methods Partial Differential Eq 24 (2008), 165–178.
    • (2008) Numer Methods Partial Differential Eq , vol.24 , pp. 165-178
    • Zhao, J.1    Dai, W.Z.2    Zhang, S.Y.3
  • 18
    • 0003881703 scopus 로고
    • Difference methods for elliptic equations
    • 18 A. A. Samarskii and V. B. Andreev, Difference methods for elliptic equations, Nauka, Moscow, 1976.
    • (1976)
    • Samarskii, A.A.1    Andreev, V.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.