-
1
-
-
0001473098
-
Time‐stable boundary conditions for finite‐difference schemes solving hyperbolic systems: methodology and application to high‐order compact schemes
-
1 H. K. Carpenter, D. Gottlieb, S. Abarbanel, Time‐stable boundary conditions for finite‐difference schemes solving hyperbolic systems: methodology and application to high‐order compact schemes, J Comput Phys 111 ( 1994), 220–236.
-
(1994)
J Comput Phys
, vol.111
, pp. 220-236
-
-
Carpenter, H.K.1
Gottlieb, D.2
Abarbanel, S.3
-
2
-
-
0021207821
-
A single cell high‐order scheme for the convection‐diffusion equation with variable coefficients
-
2 M. M. Gupta, R. P. Manohar, J. W. Stephenson, A single cell high‐order scheme for the convection‐diffusion equation with variable coefficients, Int J Numer Methods Fluids 4 ( 1984), 641–651.
-
(1984)
Int J Numer Methods Fluids
, vol.4
, pp. 641-651
-
-
Gupta, M.M.1
Manohar, R.P.2
Stephenson, J.W.3
-
3
-
-
9144220381
-
Compact finite difference schemes with spectral‐like solution
-
3 S. K. Lele, Compact finite difference schemes with spectral‐like solution, J Comput Phys 103 (2) ( 1992), 16–42.
-
(1992)
J Comput Phys
, vol.103
, Issue.2
, pp. 16-42
-
-
Lele, S.K.1
-
4
-
-
0003872107
-
High‐order compact finite difference schemes for computational mechanics
-
4 W. F. Spotz, High‐order compact finite difference schemes for computational mechanics, PhD thesis, University of Texas at Austin, Austin, TX, 1995.
-
(1995)
-
-
Spotz, W.F.1
-
5
-
-
0001780864
-
Compact implicit MacCormack‐type schemes with high accuracy
-
5 R. Hixon E. Turkel, Compact implicit MacCormack‐type schemes with high accuracy, J Comput Phys 158 (1) ( 2000), 51–70.
-
(2000)
J Comput Phys
, vol.158
, Issue.1
, pp. 51-70
-
-
Hixon, R.1
Turkel, E.2
-
6
-
-
0043073181
-
Compact schemes for acoustics in the frequency domain
-
6 S. Kim, Compact schemes for acoustics in the frequency domain, Math Comput Modelling 37 (12–13) ( 2003), 1335–1341.
-
(2003)
Math Comput Modelling
, vol.37
, Issue.12–13
, pp. 1335-1341
-
-
Kim, S.1
-
7
-
-
0000607179
-
High‐order compact difference schemes for time‐dependent Maxwell equations
-
7 J. S. Shang, High‐order compact difference schemes for time‐dependent Maxwell equations, J Comput Phys 153 (2) ( 1999), 312–333.
-
(1999)
J Comput Phys
, vol.153
, Issue.2
, pp. 312-333
-
-
Shang, J.S.1
-
8
-
-
0036495593
-
Compact ADI method for solving parabolic differential equations
-
8 W. Dai R. Nassar, Compact ADI method for solving parabolic differential equations, Numer Methods Partial Differential Eq 18 (2) ( 2002), 129–142.
-
(2002)
Numer Methods Partial Differential Eq
, vol.18
, Issue.2
, pp. 129-142
-
-
Dai, W.1
Nassar, R.2
-
9
-
-
0003095767
-
Improved forms of the alternating direction methods for solving parabolic and elliptic equations
-
9 A. R. Mitchell G. Fairweather, Improved forms of the alternating direction methods for solving parabolic and elliptic equations, Numer Math 6 ( 1964), 285–292.
-
(1964)
Numer Math
, vol.6
, pp. 285-292
-
-
Mitchell, A.R.1
Fairweather, G.2
-
10
-
-
0024050730
-
A third‐order semi‐implicit finite difference method for solving the one‐dimensional convection‐diffusion equation
-
10 B. J. Noye H. H. Tan, A third‐order semi‐implicit finite difference method for solving the one‐dimensional convection‐diffusion equation, Int J Numer Methods Engrg 26 ( 1988), 1615–1629.
-
(1988)
Int J Numer Methods Engrg
, vol.26
, pp. 1615-1629
-
-
Noye, B.J.1
Tan, H.H.2
-
11
-
-
0024050730
-
Finite difference methods for solving the two‐dimensional advection‐diffusion equation
-
11 B. J. Noye H. H. Tan, Finite difference methods for solving the two‐dimensional advection‐diffusion equation, Int J Numer Methods Fluids 26 ( 1988), 1615–1629.
-
(1988)
Int J Numer Methods Fluids
, vol.26
, pp. 1615-1629
-
-
Noye, B.J.1
Tan, H.H.2
-
12
-
-
0007747818
-
High‐order difference schemes for unsteady one‐dimensional diffusion‐convection problems
-
12 A. Rigal, High‐order difference schemes for unsteady one‐dimensional diffusion‐convection problems, J Comput Phys 114 ( 1994), 59–76.
-
(1994)
J Comput Phys
, vol.114
, pp. 59-76
-
-
Rigal, A.1
-
13
-
-
3042758465
-
Schémas compacts d'ordre élevé: application aux problémes bidimensionnels de diffusion‐convection instationnaire I
-
13 A. Rigal, Schémas compacts d'ordre élevé: application aux problémes bidimensionnels de diffusion‐convection instationnaire I, CR Acad Sci Paris Sr I Math 328 ( 1999), 535–538.
-
(1999)
CR Acad Sci Paris Sr I Math
, vol.328
, pp. 535-538
-
-
Rigal, A.1
-
14
-
-
0035499484
-
Extension of high‐order compact schemes to time‐dependent problems
-
14 W. F. Spotz G. F. Carey, Extension of high‐order compact schemes to time‐dependent problems, Numer Methods Partial Differential Eq 17 ( 2001), 657–672.
-
(2001)
Numer Methods Partial Differential Eq
, vol.17
, pp. 657-672
-
-
Spotz, W.F.1
Carey, G.F.2
-
15
-
-
0037197866
-
A class of higher order compact schemes for the unsteady two‐dimensional convection‐diffusion equation with variable convection coefficients
-
15 J. C. Kalita, D. C. Dalal, A. K. Dass, A class of higher order compact schemes for the unsteady two‐dimensional convection‐diffusion equation with variable convection coefficients, Int J Numer Methods Fluids 38 ( 2002), 1111–1131.
-
(2002)
Int J Numer Methods Fluids
, vol.38
, pp. 1111-1131
-
-
Kalita, J.C.1
Dalal, D.C.2
Dass, A.K.3
-
16
-
-
3042771625
-
High order ADI method for solving unsteady convection‐diffusion problems
-
16 S. Karaa J. Zhang, High order ADI method for solving unsteady convection‐diffusion problems, J Comput Phys 198 (1) ( 2004), 1–9.
-
(2004)
J Comput Phys
, vol.198
, Issue.1
, pp. 1-9
-
-
Karaa, S.1
Zhang, J.2
-
17
-
-
85120594126
-
Iterative methods and high‐order difference schemes for 2D elliptic problems with mixed derivative
-
17 M. Fournié S. Karaa, Iterative methods and high‐order difference schemes for 2D elliptic problems with mixed derivative, J App Math Comput, to appear.
-
J App Math Comput
-
-
Fournié, M.1
Karaa, S.2
-
18
-
-
85041311586
-
An accurate finite difference scheme for 2‐D parabolic problems with mixed derivative
-
18 S. Karaa, An accurate finite difference scheme for 2‐D parabolic problems with mixed derivative, Far East J Appl Math 23 (3) ( 2006), 287–297.
-
(2006)
Far East J Appl Math
, vol.23
, Issue.3
, pp. 287-297
-
-
Karaa, S.1
-
19
-
-
0000048673
-
GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
-
19 Y. Saad M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Statist Comput 7 ( 1986), 856–869.
-
(1986)
SIAM J Sci Statist Comput
, vol.7
, pp. 856-869
-
-
Saad, Y.1
Schultz, M.H.2
-
20
-
-
0003554096
-
Iterative methods for sparse linear systems
-
20 Y. Saad, Iterative methods for sparse linear systems, PWS Publishing, New York, 1996.
-
(1996)
-
-
Saad, Y.1
-
21
-
-
84966239626
-
Generalized OCI schemes for boundary layer problems
-
21 A. E. Berger, J. M. Solomon, M. Ciment, B. C. Weinberg, Generalized OCI schemes for boundary layer problems, Math Comput 35 ( 1980), 695–731.
-
(1980)
Math Comput
, vol.35
, pp. 695-731
-
-
Berger, A.E.1
Solomon, J.M.2
Ciment, M.3
Weinberg, B.C.4
-
22
-
-
85041102747
-
Preconditioned iterative methods and finite difference schemes for convection‐diffusion
-
22 J. Zhang, Preconditioned iterative methods and finite difference schemes for convection‐diffusion, Appl Math Comput 109 ( 2000), 11–30.
-
(2000)
Appl Math Comput
, vol.109
, pp. 11-30
-
-
Zhang, J.1
-
23
-
-
0004330846
-
An introduction to multigrid methods
-
23 P. Wesseling, An introduction to multigrid methods, Wiley, Chichester, England, 1992.
-
(1992)
-
-
Wesseling, P.1
|