-
1
-
-
84953600891
-
A practical method for numerical evaluation of solutions of partial differential equations of the heat‐conduction type
-
1 J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat‐conduction type, Proc Cambridge Philos Soc 43 ( 1947), 50–67.
-
(1947)
Proc Cambridge Philos Soc
, vol.43
, pp. 50-67
-
-
Crank, J.1
Nicolson, P.2
-
2
-
-
0003638214
-
Numerical solution of partial differential equations: finite difference methods
-
2 G. Smith, Numerical solution of partial differential equations: finite difference methods, 2nd Ed., Oxford University Press, Oxford, 1978.
-
(1978)
-
-
Smith, G.1
-
3
-
-
0001692934
-
High‐accuracy finite‐difference schemes for the diffusion equation
-
3 M. M. Chawia, M. A. Al‐Zanaidi, and A. Z. Al‐Shammeri, High‐accuracy finite‐difference schemes for the diffusion equation, Neural Parallel Sci Comput 6 ( 1998), 523–535.
-
(1998)
Neural Parallel Sci Comput
, vol.6
, pp. 523-535
-
-
Chawia, M.M.1
Al‐Zanaidi, M.A.2
Al‐Shammeri, A.Z.3
-
4
-
-
0003737242
-
Solving differential problems by multistep initial and boundary value methods
-
4 L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gordon and Beach Science Publishers, Amsterdam, 1998.
-
(1998)
-
-
Brugnano, L.1
Trigiante, D.2
-
5
-
-
62649118265
-
Stability properties of some BVM methods
-
5 L. Brugnano and D. Trigiante, Stability properties of some BVM methods, Appl Numer Math 13 ( 1993), 201–304.
-
(1993)
Appl Numer Math
, vol.13
, pp. 201-304
-
-
Brugnano, L.1
Trigiante, D.2
-
6
-
-
0032204862
-
Boundary value methods: the third way between linear multistep and Runge‐Kutta methods
-
6 L. Brugnano and D. Trigiante, Boundary value methods: the third way between linear multistep and Runge‐Kutta methods, Computers Math Applic 36 (10–12) ( 1998), 269–284.
-
(1998)
Computers Math Applic
, vol.36
, Issue.10–12
, pp. 269-284
-
-
Brugnano, L.1
Trigiante, D.2
-
7
-
-
0035531729
-
Strang‐type preconditioners for systems of LMF‐based ODE codes
-
7 R. Chan, M. Ng, and X. Jin, Strang‐type preconditioners for systems of LMF‐based ODE codes, IMA J Numer Anal 21 ( 2001), 451–462.
-
(2001)
IMA J Numer Anal
, vol.21
, pp. 451-462
-
-
Chan, R.1
Ng, M.2
Jin, X.3
-
8
-
-
0000952906
-
Stability of some boundary value methods for IVPs
-
8 P. Ghelardoni and P. Marzulli, Stability of some boundary value methods for IVPs, Appl Num Math 18 ( 1995), 141–153.
-
(1995)
Appl Num Math
, vol.18
, pp. 141-153
-
-
Ghelardoni, P.1
Marzulli, P.2
-
9
-
-
0007152722
-
Stability of some boundary value methods for the solution of initial value problems
-
9 P. Amodio, F. Mazzia, and D. Trigiante, Stability of some boundary value methods for the solution of initial value problems, BIT 33 ( 1993), 434–451.
-
(1993)
BIT
, vol.33
, pp. 434-451
-
-
Amodio, P.1
Mazzia, F.2
Trigiante, D.3
-
10
-
-
84985349853
-
High‐order difference schemes for two‐dimensional elliptic equations
-
10 M. M. Gupta, R. P. Manohar, and J. W. Stephenson, High‐order difference schemes for two‐dimensional elliptic equations, Numer Methods Partial Differential Eq 1 ( 1985), 71–80.
-
(1985)
Numer Methods Partial Differential Eq
, vol.1
, pp. 71-80
-
-
Gupta, M.M.1
Manohar, R.P.2
Stephenson, J.W.3
-
11
-
-
0029380108
-
High‐order compact scheme for the steady stream‐function vorticity equations
-
11 W. F. Spotz and G. F. Carey, High‐order compact scheme for the steady stream‐function vorticity equations, Int J Numer Methods Engrg 38 ( 1995), 3497–3512.
-
(1995)
Int J Numer Methods Engrg
, vol.38
, pp. 3497-3512
-
-
Spotz, W.F.1
Carey, G.F.2
-
12
-
-
0032030123
-
An explicit fourth‐order compact finite difference scheme for three dimensional convection‐diffusion equation
-
12 J. Zhang, An explicit fourth‐order compact finite difference scheme for three dimensional convection‐diffusion equation, Commun Numer Methods Engrg 14 ( 1998), 209–218.
-
(1998)
Commun Numer Methods Engrg
, vol.14
, pp. 209-218
-
-
Zhang, J.1
-
13
-
-
0010975108
-
A two colorable fourth‐order compact difference scheme and parallel iterative solution of the 3D convection diffusion equation
-
13 J. Zhang, L. Ge, and J. Kouatchou, A two colorable fourth‐order compact difference scheme and parallel iterative solution of the 3D convection diffusion equation, Math Comput Simulation 54 (1–3) ( 2000), 65–80.
-
(2000)
Math Comput Simulation
, vol.54
, Issue.1–3
, pp. 65-80
-
-
Zhang, J.1
Ge, L.2
Kouatchou, J.3
-
14
-
-
0035499484
-
Extension of high order compact schemes to time dependent problems
-
14 W. F. Spotz and G. F. Carey, Extension of high order compact schemes to time dependent problems, Numer Methods Partial Differential Eq 17 (6) ( 2001), 657–672.
-
(2001)
Numer Methods Partial Differential Eq
, vol.17
, Issue.6
, pp. 657-672
-
-
Spotz, W.F.1
Carey, G.F.2
-
15
-
-
0035508195
-
High accuracy stable numerical solution of 1D microscale heat transport equation
-
15 J. Zhang and J. J. Zhao, High accuracy stable numerical solution of 1D microscale heat transport equation, Commun Numer Methods Engrg 17 ( 2001), 821–832.
-
(2001)
Commun Numer Methods Engrg
, vol.17
, pp. 821-832
-
-
Zhang, J.1
Zhao, J.J.2
-
16
-
-
0003872107
-
High‐order compact finite difference schemes for computational mechanics
-
16 W. F. Spotz, High‐order compact finite difference schemes for computational mechanics, Ph.D. thesis, University of Texas at Austin, Austin, TX, 1995.
-
(1995)
-
-
Spotz, W.F.1
-
17
-
-
21844523518
-
Sine transform based preconditioners for symmetric Toeplitz systems
-
17 R. Chan, M. Ng, and C. Wong, Sine transform based preconditioners for symmetric Toeplitz systems, Linear Algebra Appl 232 ( 1996), 237–260.
-
(1996)
Linear Algebra Appl
, vol.232
, pp. 237-260
-
-
Chan, R.1
Ng, M.2
Wong, C.3
-
18
-
-
0034975734
-
A circulant preconditioner for the systems of LMF‐based ODE codes
-
18 D. Bertaccini, A circulant preconditioner for the systems of LMF‐based ODE codes, SIAM J Sci Comput 22 (3) ( 2000), 767–786.
-
(2000)
SIAM J Sci Comput
, vol.22
, Issue.3
, pp. 767-786
-
-
Bertaccini, D.1
-
19
-
-
0033196950
-
A validated parallel across time and space solution of the heat transfer equation
-
19 F. Jèzèquel, A validated parallel across time and space solution of the heat transfer equation, Appl Numer Math 31 ( 1999), 65–79.
-
(1999)
Appl Numer Math
, vol.31
, pp. 65-79
-
-
Jèzèquel, F.1
-
20
-
-
0034916588
-
Parallel implementation for a high‐order implicit collocation method for the heat equation
-
20 J. Kouatchou, Parallel implementation for a high‐order implicit collocation method for the heat equation, Math Comput Simulation 54 ( 2001), 509–519.
-
(2001)
Math Comput Simulation
, vol.54
, pp. 509-519
-
-
Kouatchou, J.1
-
21
-
-
0011911815
-
Finite differences and collocation methods for the solution of the two‐dimensional heat equation
-
21 J. Kouatchou, Finite differences and collocation methods for the solution of the two‐dimensional heat equation, Numer Methods Partial Differential Eq 17 ( 2001), 54–63.
-
(2001)
Numer Methods Partial Differential Eq
, vol.17
, pp. 54-63
-
-
Kouatchou, J.1
|