메뉴 건너뛰기




Volumn 42, Issue 5, 2009, Pages 895-904

The value of parsing as feature generation for gene mention recognition

Author keywords

Biological text; Gene mention recognition; Machine learning; Named entity recognition; Natural language processing; Parsers; Support vector machines

Indexed keywords

BIOLOGICAL TEXT; MACHINE LEARNING; NAMED ENTITY RECOGNITION; NATURAL LANGUAGE PROCESSING; PARSERS;

EID: 70349456966     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2009.03.011     Document Type: Article
Times cited : (5)

References (42)
  • 2
    • 0036678776 scopus 로고    scopus 로고
    • Tagging gene and protein names in biomedical text
    • Tanabe L., and Wilbur W.J. Tagging gene and protein names in biomedical text. Bioinformatics 18 8 (2002) 1124-1132
    • (2002) Bioinformatics , vol.18 , Issue.8 , pp. 1124-1132
    • Tanabe, L.1    Wilbur, W.J.2
  • 3
    • 33947359082 scopus 로고    scopus 로고
    • BioCreAtIvE Task 1A: gene mention finding evaluation
    • Yeh A., Morgan A., Colosimo M., and Hirschman L. BioCreAtIvE Task 1A: gene mention finding evaluation. BMC Bioinform 6 Suppl. 1 (2005) S2
    • (2005) BMC Bioinform , vol.6 , Issue.SUPPL. 1
    • Yeh, A.1    Morgan, A.2    Colosimo, M.3    Hirschman, L.4
  • 5
    • 70349567107 scopus 로고    scopus 로고
    • Collins M, Singer Y. Unsupervised models for named entity classification. 1999 Joint SIGDAT conference on EMNLP and VLC; 1999.
    • Collins M, Singer Y. Unsupervised models for named entity classification. 1999 Joint SIGDAT conference on EMNLP and VLC; 1999.
  • 8
    • 51049095835 scopus 로고    scopus 로고
    • Tackling the BioCreative 2 Gene mention task with conditional random fields and syntactic parsing
    • Madrid, Spain;
    • Vlachos A. Tackling the BioCreative 2 Gene mention task with conditional random fields and syntactic parsing. Second BioCreative challenge evaluation workshop. Madrid, Spain; 2006. p. 85-8.
    • (2006) Second BioCreative challenge evaluation workshop , pp. 85-88
    • Vlachos, A.1
  • 9
    • 70349582416 scopus 로고    scopus 로고
    • Finkel J, Dingare S, Nguyen H, Nissim M, Manning C, Sinclair G. Exploiting context for biomedical entity recognition: from syntax to the web. JNLPBA; 2004.
    • Finkel J, Dingare S, Nguyen H, Nissim M, Manning C, Sinclair G. Exploiting context for biomedical entity recognition: from syntax to the web. JNLPBA; 2004.
  • 10
    • 78049366409 scopus 로고    scopus 로고
    • Erkan G, Ozgur A, Radev D. Semi-supervised classification for extracting protein interaction sentences using dependency parsing. EMNLP; 2007.
    • Erkan G, Ozgur A, Radev D. Semi-supervised classification for extracting protein interaction sentences using dependency parsing. EMNLP; 2007.
  • 12
    • 70349571433 scopus 로고    scopus 로고
    • Saetre R, Sagae K, Tsujii J. Syntactic features for protein-protein interaction extraction. LBM; 2007.
    • Saetre R, Sagae K, Tsujii J. Syntactic features for protein-protein interaction extraction. LBM; 2007.
  • 13
    • 70349573621 scopus 로고    scopus 로고
    • Miyao Y, Saetre R, Sagae K, Matsuzaki T, Tsujii J. Task-oriented evaluation of syntactic parsers and their representations. ACL-08: HLT; Columbus, OH: Association for computational linguistics; 2008.
    • Miyao Y, Saetre R, Sagae K, Matsuzaki T, Tsujii J. Task-oriented evaluation of syntactic parsers and their representations. ACL-08: HLT; Columbus, OH: Association for computational linguistics; 2008.
  • 17
    • 33847095048 scopus 로고    scopus 로고
    • Benchmarking natural-language parsers for biological applications using dependency graphs
    • Clegg AB, Shepherd AJ. Benchmarking natural-language parsers for biological applications using dependency graphs. BMC Bioinform 2007:17.
    • (2007) BMC Bioinform , pp. 17
    • Clegg, A.B.1    Shepherd, A.J.2
  • 18
    • 70349567106 scopus 로고    scopus 로고
    • Katrenko S, Adriaans P. Learning relations from biomedical corpora using dependency trees. KDECB; 2006.
    • Katrenko S, Adriaans P. Learning relations from biomedical corpora using dependency trees. KDECB; 2006.
  • 19
    • 70349568237 scopus 로고    scopus 로고
    • Probabilistic disambiguation models for wide-coverage HPSG parsing
    • Ann Arbor, Michigan: Association for Computational Linguistics;
    • Miyao Y, Tsujii J. Probabilistic disambiguation models for wide-coverage HPSG parsing. 43rd Annual meeting on association for computational linguistics. Ann Arbor, Michigan: Association for Computational Linguistics; 2005.
    • (2005) 43rd Annual meeting on association for computational linguistics
    • Miyao, Y.1    Tsujii, J.2
  • 21
    • 5044241106 scopus 로고    scopus 로고
    • MedPost: a part of speech tagger for biomedical text
    • Smith L., Rindflesch T., and Wilbur W. MedPost: a part of speech tagger for biomedical text. Bioinformatics 20 14 (2004) 2
    • (2004) Bioinformatics , vol.20 , Issue.14 , pp. 2
    • Smith, L.1    Rindflesch, T.2    Wilbur, W.3
  • 24
    • 70349578640 scopus 로고    scopus 로고
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Available electronically from the author: Bell Laboratories, Lucent Technologies;1999.
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Available electronically from the author: Bell Laboratories, Lucent Technologies;1999.
  • 25
    • 70349560951 scopus 로고    scopus 로고
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Dortmund, Germany: Universitat Dortmund1997 November 27, 1997. Report No.: LS-8 Report 23.
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Dortmund, Germany: Universitat Dortmund1997 November 27, 1997. Report No.: LS-8 Report 23.
  • 27
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Machine Learn 37 3 (1999) 297-336
    • (1999) Machine Learn , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 28
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • Berger A.L., Pietra S.A.D., and Pietra V.J.D. A maximum entropy approach to natural language processing. Comput Linguistics 22 1 (1996) 39-71
    • (1996) Comput Linguistics , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.L.1    Pietra, S.A.D.2    Pietra, V.J.D.3
  • 29
    • 14344259207 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • Banff, Alberta, Canada;
    • Zhang T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. Twenty-first international conference on machine learning. Banff, Alberta, Canada; 2004.
    • (2004) Twenty-first international conference on machine learning
    • Zhang, T.1
  • 32
    • 0034575784 scopus 로고    scopus 로고
    • Boosting naive bayesian learning on a large subset of MEDLINE
    • Los Angeles, CA: American Medical Informatics Association
    • Wilbur WJ. Boosting naive bayesian learning on a large subset of MEDLINE. American medical informatics 2000 annual symposium. Los Angeles, CA: American Medical Informatics Association: 2000. p. 918-22.
    • (2000) American medical informatics 2000 annual symposium , pp. 918-922
    • Wilbur, W.J.1
  • 33
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10 7 (1998) 29
    • (1998) Neural Comput , vol.10 , Issue.7 , pp. 29
    • Dietterich, T.1
  • 34
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the roc curve for multiple class classification problems
    • Hand D.G., and Till R.J. A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learn 45 2 (2001) 16
    • (2001) Machine Learn , vol.45 , Issue.2 , pp. 16
    • Hand, D.G.1    Till, R.J.2
  • 35
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classification methods
    • Zhang T., and Oles F.J. Text categorization based on regularized linear classification methods. Info Retrieval 4 1 (2001) 5-31
    • (2001) Info Retrieval , vol.4 , Issue.1 , pp. 5-31
    • Zhang, T.1    Oles, F.J.2
  • 36
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Scholkopf B., Burges C., and Smola A. (Eds), MIT-Press
    • Joachims T. Making large-scale SVM learning practical. In: Scholkopf B., Burges C., and Smola A. (Eds). Advances in Kernel methods - support vector learning (1999), MIT-Press
    • (1999) Advances in Kernel methods - support vector learning
    • Joachims, T.1
  • 38
    • 25844512848 scopus 로고    scopus 로고
    • Design of a multi-lingual, parallel-processing statistical parsing engine
    • San Diego, CA;
    • Bikel DM. Design of a multi-lingual, parallel-processing statistical parsing engine. human language technology conference 2002 (HLT2002). San Diego, CA; 2002.
    • (2002) human language technology conference 2002 (HLT2002)
    • Bikel, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.