메뉴 건너뛰기




Volumn 5519 LNCS, Issue , 2009, Pages 364-374

FaSS: Ensembles for stable learners

Author keywords

Local models; Stable learners

Indexed keywords

BASE LEARNERS; BASE MODELS; EMPIRICAL EVALUATIONS; EXECUTION TIME; GLOBAL MODELS; LARGE DATASETS; LOCAL MODEL; LOCAL MODELS; LOCALISATION; NEW APPROACHES; PREDICTIVE ACCURACY; RANDOM FORESTS; RANDOMISATION; SPACE SUBDIVISION; SPEED-UPS; STABLE LEARNERS;

EID: 70349333851     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02326-2_37     Document Type: Conference Paper
Times cited : (1)

References (14)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L.: Bagging Predictors. Machine Learning 24, 123-140 (1996)
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0032139235 scopus 로고    scopus 로고
    • The Random Subspace Method for Constructing Decision Forests
    • Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Analysis and Machine Intelligence 20(8), 832-844 (1998)
    • (1998) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 6
    • 85156137079 scopus 로고    scopus 로고
    • Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid
    • Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid. In: Proc. of the 2nd KDD, pp. 202-207 (1996)
    • (1996) Proc. of the 2nd KDD , pp. 202-207
    • Kohavi, R.1
  • 8
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles
    • Opitz, D.: Feature selection for ensembles. In: Proc. of the 16th AAAI, pp. 379-384 (1999)
    • (1999) Proc. of the 16th AAAI , pp. 379-384
    • Opitz, D.1
  • 9
    • 84944215019 scopus 로고    scopus 로고
    • Oza, N.C., Tumer, K.: Input Decimation Ensembles: Decorrelation through Dimensionality Reduction. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, 2096, pp. 238-247. Springer, Heidelberg (2001)
    • Oza, N.C., Tumer, K.: Input Decimation Ensembles: Decorrelation through Dimensionality Reduction. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 238-247. Springer, Heidelberg (2001)
  • 11
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E., Singer, S.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37, 297-336 (1999)
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, S.2
  • 12
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(7), 1088-1099 (2006)
    • (2006) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 14
    • 0034301677 scopus 로고    scopus 로고
    • Lazy Learning of Bayesian Rules
    • Zheng, Z., Webb, G.I.: Lazy Learning of Bayesian Rules. Machine Learning 41(1), 53-84 (2000)
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.