메뉴 건너뛰기




Volumn 80, Issue 5, 2009, Pages

Quantum breathing mode of trapped bosons and fermions at arbitrary coupling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70249120436     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.80.054515     Document Type: Article
Times cited : (41)

References (32)
  • 3
    • 0034337299 scopus 로고    scopus 로고
    • 10.1002/1521-3951(200009)221:1<231::AID-PSSB231>3.0.CO;2-D
    • A. V. Filinov, Yu. E. Lozovik, and M. Bonitz, Phys. Status Solidi B 221, 231 (2000) 10.1002/1521-3951(200009)221:1<231::AID-PSSB231>3.0.CO;2-D
    • (2000) Phys. Status Solidi B , vol.221 , pp. 231
    • Filinov, A.V.1    Lozovik, Yu.E.2    Bonitz, M.3
  • 5
    • 33644958906 scopus 로고    scopus 로고
    • 10.1038/nphys138
    • I. Bloch, Nat. Phys. 1, 23 (2005). 10.1038/nphys138
    • (2005) Nat. Phys. , vol.1 , pp. 23
    • Bloch, I.1
  • 9
    • 0036818964 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.66.043610
    • C. Menotti and S. Stringari, Phys. Rev. A 66, 043610 (2002). 10.1103/PhysRevA.66.043610
    • (2002) Phys. Rev. A , vol.66 , pp. 043610
    • Menotti, C.1    Stringari, S.2
  • 15
    • 70249124137 scopus 로고    scopus 로고
    • 1d results for l=3 have been obtained in Ref. within a hydrodynamical model, whereas for l=2, ωBM is known to be λ independent (Ref.).
    • 1d results for l=3 have been obtained in Ref. within a hydrodynamical model, whereas for l=2, ωBM is known to be λ independent (Ref.).
  • 16
    • 2842590330 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.53.6979
    • M. R. Geller and G. Vignale, Phys. Rev. B 53, 6979 (1996). 10.1103/PhysRevB.53.6979
    • (1996) Phys. Rev. B , vol.53 , pp. 6979
    • Geller, M.R.1    Vignale, G.2
  • 17
    • 70249095895 scopus 로고    scopus 로고
    • We should note, that both excitations, (I) and (II), have vanishing dipole moments. Therefore, no dipole oscillation, as, e.g., the well-known Kohn mode, can be excited.
    • We should note, that both excitations, (I) and (II), have vanishing dipole moments. Therefore, no dipole oscillation, as, e.g., the well-known Kohn mode, can be excited.
  • 18
    • 70249126850 scopus 로고    scopus 로고
    • Note that for other types of excitation other center-of-mass motions will be observed. In particular, a dipole excitation will give rise to the familiar sloshing or Kohn mode which is independent of N, dimensionality, interaction or quantum, and spin effects.
    • Note that for other types of excitation other center-of-mass motions will be observed. In particular, a dipole excitation will give rise to the familiar sloshing or Kohn mode which is independent of N, dimensionality, interaction or quantum, and spin effects.
  • 19
    • 70249084819 scopus 로고    scopus 로고
    • E-PRBMDO-80-055929 for a video illustrating the oscillation behavior of two particles in 2D. For more information on EPAPS, see
    • See EPAPS Document No. E-PRBMDO-80-055929 for a video illustrating the oscillation behavior of two particles in 2D. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
  • 20
    • 70249114738 scopus 로고    scopus 로고
    • For 1/ r2 interaction the existence of a twofold degenerate BM with ωR = ωr =2 was reported in Ref..
    • For 1/ r2 interaction the existence of a twofold degenerate BM with ωR = ωr =2 was reported in Ref..
  • 21
    • 67650927328 scopus 로고    scopus 로고
    • 10.1088/1751-8113/42/21/214020
    • K. Balzer and M. Bonitz, J. Phys. A 42, 214020 (2009). 10.1088/1751-8113/42/21/214020
    • (2009) J. Phys. A , vol.42 , pp. 214020
    • Balzer, K.1    Bonitz, M.2
  • 22
    • 36849136337 scopus 로고
    • 10.1063/1.1703687
    • M. Girardeau, J. Math. Phys. 1, 516 (1960). 10.1063/1.1703687
    • (1960) J. Math. Phys. , vol.1 , pp. 516
    • Girardeau, M.1
  • 23
    • 70249137186 scopus 로고    scopus 로고
    • In contrast, φ0A vanishes at the singularity and the numerical result for ωr is correct, in the limit of small κ. Hence, we used φ0A in our 1D calculations.
    • In contrast, φ0A vanishes at the singularity and the numerical result for ωr is correct, in the limit of small κ. Hence, we used φ0A in our 1D calculations.
  • 24
    • 70249116012 scopus 로고    scopus 로고
    • In 2D, the Coulomb integrals converge and no cut-off parameter κ is required.
    • In 2D, the Coulomb integrals converge and no cut-off parameter κ is required.
  • 25
    • 70249137548 scopus 로고    scopus 로고
    • The limits, ωr (0) = 2.0 and ωr (λ→∝) =3 are built in. In 1D (2D) the parameters are b=0.867 (b=0.204) and c=1.742 (c=0.296).
    • The limits, ωr (0) =2.0 and ωr (λ→∝) =3 are built in. In 1D (2D) the parameters are b=0.867 (b=0.204) and c=1.742 (c=0.296).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.