-
2
-
-
0000001145
-
-
10.1038/379413a0
-
R. C. Ashoori, Nature (London) 379, 413 (1996). 10.1038/379413a0
-
(1996)
Nature (London)
, vol.379
, pp. 413
-
-
Ashoori, R.C.1
-
3
-
-
0942288713
-
-
10.1103/PhysRevLett.91.257401
-
T. Brocke, M.-T. Bootsmann, M. Tews, B. Wunsch, D. Pfannkuche, Ch. Heyn, W. Hansen, D. Heitmann, and C. Schüller, Phys. Rev. Lett. 91, 257401 (2003). 10.1103/PhysRevLett.91.257401
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 257401
-
-
Brocke, T.1
Bootsmann, M.-T.2
Tews, M.3
Wunsch, B.4
Pfannkuche, D.5
Heyn, Ch.6
Hansen, W.7
Heitmann, D.8
Schüller, C.9
-
5
-
-
2342430643
-
-
10.1103/PhysRevB.69.125344
-
B. Szafran, F. M. Peeters, S. Bednarek, and J. Adamowski, Phys. Rev. B 69, 125344 (2004). 10.1103/PhysRevB.69.125344
-
(2004)
Phys. Rev. B
, vol.69
, pp. 125344
-
-
Szafran, B.1
Peeters, F.M.2
Bednarek, S.3
Adamowski, J.4
-
14
-
-
50249185634
-
-
10.1088/1367-2630/10/8/083031
-
P. Ludwig, K. Balzer, A. Filinov, H. Stolz, and M. Bonitz, New J. Phys. 10, 083031 (2008). 10.1088/1367-2630/10/8/083031
-
(2008)
New J. Phys.
, vol.10
, pp. 083031
-
-
Ludwig, P.1
Balzer, K.2
Filinov, A.3
Stolz, H.4
Bonitz, M.5
-
16
-
-
0041837512
-
-
10.1103/PhysRevB.68.045309
-
B. Reusch and H. Grabert, Phys. Rev. B 68, 045309 (2003). 10.1103/PhysRevB.68.045309
-
(2003)
Phys. Rev. B
, vol.68
, pp. 045309
-
-
Reusch, B.1
Grabert, H.2
-
17
-
-
34547926149
-
-
10.1063/1.2179418
-
M. Rontani, C. Cavazzoni, D. Bellucci, and G. Goldoni, J. Chem. Phys. 124, 124102 (2006). 10.1063/1.2179418
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 124102
-
-
Rontani, M.1
Cavazzoni, C.2
Bellucci, D.3
Goldoni, G.4
-
18
-
-
0344717984
-
-
10.1103/PhysRevLett.82.3320
-
R. Egger, W. Häusler, C. H. Mak, and H. Grabert, Phys. Rev. Lett. 82, 3320 (1999). 10.1103/PhysRevLett.82.3320
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3320
-
-
Egger, R.1
Häusler, W.2
Mak, C.H.3
Grabert, H.4
-
20
-
-
0034337299
-
-
10.1002/1521-3951(200009)221:1<231::AID-PSSB231>3.0.CO;2-D
-
A. V. Filinov, Yu. E. Lozovik, and M. Bonitz, Phys. Status Solidi B 221, 231 (2000). 10.1002/1521-3951(200009)221:1<231::AID-PSSB231>3.0.CO;2-D
-
(2000)
Phys. Status Solidi B
, vol.221
, pp. 231
-
-
Filinov, A.V.1
Lozovik, Yu.E.2
Bonitz, M.3
-
21
-
-
37649028936
-
-
10.1103/PhysRevB.70.035323
-
A. V. Filinov, C. Riva, F. M. Peeters, Yu. E. Lozovik, and M. Bonitz, Phys. Rev. B 70, 035323 (2004). 10.1103/PhysRevB.70.035323
-
(2004)
Phys. Rev. B
, vol.70
, pp. 035323
-
-
Filinov, A.V.1
Riva, C.2
Peeters, F.M.3
Lozovik, Yu.E.4
Bonitz, M.5
-
22
-
-
33749159094
-
-
10.1103/PhysRevB.72.035332
-
A. S. Bracker, E. A. Stinaff, D. Gammon, M. E. Ware, J. G. Tischler, D. Park, D. Gershoni, A. V. Filinov, M. Bonitz, F. M. Peeters, and C. Riva, Phys. Rev. B 72, 035332 (2005). 10.1103/PhysRevB.72.035332
-
(2005)
Phys. Rev. B
, vol.72
, pp. 035332
-
-
Bracker, A.S.1
Stinaff, E.A.2
Gammon, D.3
Ware, M.E.4
Tischler, J.G.5
Park, D.6
Gershoni, D.7
Filinov, A.V.8
Bonitz, M.9
Peeters, F.M.10
Riva, C.11
-
23
-
-
79051468883
-
-
10.1209/0295-5075/84/67001
-
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, EPL 84, 67001 (2008); 10.1209/0295-5075/84/67001
-
(2008)
EPL
, vol.84
, pp. 67001
-
-
Myöhänen, P.1
Stan, A.2
Stefanucci, G.3
Van Leeuwen, R.4
-
24
-
-
67650927328
-
-
10.1088/1751-8113/42/21/214020
-
K. Balzer and M. Bonitz, J. Phys. A 42, 214020 (2009). 10.1088/1751-8113/42/21/214020
-
(2009)
J. Phys. A
, vol.42
, pp. 214020
-
-
Balzer, K.1
Bonitz, M.2
-
28
-
-
0000869919
-
-
10.1088/0953-8984/8/33/012
-
M. Bonitz, D. Kremp, D. C. Scott, R. Binder, W. D. Kraeft, and H. S. Köhler, J. Phys.: Condens. Matter 8, 6057 (1996). 10.1088/0953-8984/8/33/ 012
-
(1996)
J. Phys.: Condens. Matter
, vol.8
, pp. 6057
-
-
Bonitz, M.1
Kremp, D.2
Scott, D.C.3
Binder, R.4
Kraeft, W.D.5
Köhler, H.S.6
-
29
-
-
1542739318
-
-
10.1103/PhysRevB.55.5110
-
R. Binder, H. S. Kohler, M. Bonitz, and N. Kwong, Phys. Rev. B 55, 5110 (1997). 10.1103/PhysRevB.55.5110
-
(1997)
Phys. Rev. B
, vol.55
, pp. 5110
-
-
Binder, R.1
Kohler, H.S.2
Bonitz, M.3
Kwong, N.4
-
30
-
-
0032384193
-
-
10.1002/(SICI)1521-3951(199803)206:1<197::AID-PSSB197>3.0.CO;2-9
-
N. H. Kwong, M. Bonitz, R. Binder, and H. S. Köhler, Phys. Status Solidi B 206, 197 (1998); 10.1002/(SICI)1521-3951(199803)206:1<197::AID- PSSB197>3.0.CO;2-9
-
(1998)
Phys. Status Solidi B
, vol.206
, pp. 197
-
-
Kwong, N.H.1
Bonitz, M.2
Binder, R.3
Köhler, H.S.4
-
31
-
-
0000969355
-
-
10.1103/PhysRevLett.84.1768
-
N. H. Kwong and M. Bonitz, Phys. Rev. Lett. 84, 1768 (2000). 10.1103/PhysRevLett.84.1768
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 1768
-
-
Kwong, N.H.1
Bonitz, M.2
-
32
-
-
0032384194
-
-
10.1002/(SICI)1521-3951(199803)206:1<257::AID-PSSB257>3.0.CO;2-L
-
D. O. Gericke, S. Kosse, M. Schlanges, and M. Bonitz, Phys. Status Solidi B 206, 257 (1998). 10.1002/(SICI)1521-3951(199803)206:1<257::AID- PSSB257>3.0.CO;2-L
-
(1998)
Phys. Status Solidi B
, vol.206
, pp. 257
-
-
Gericke, D.O.1
Kosse, S.2
Schlanges, M.3
Bonitz, M.4
-
36
-
-
12344271673
-
-
10.1143/JPSJ.12.570;
-
R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957) 10.1143/JPSJ.12.570
-
(1957)
J. Phys. Soc. Jpn.
, vol.12
, pp. 570
-
-
Kubo, R.1
-
37
-
-
33847327575
-
-
10.1088/0034-4885/29/1/306
-
R. Kubo, Rep. Prog. Phys. 29, 255 (1966). 10.1088/0034-4885/29/1/306
-
(1966)
Rep. Prog. Phys.
, vol.29
, pp. 255
-
-
Kubo, R.1
-
38
-
-
0037120381
-
-
10.1103/PhysRevLett.89.126401
-
W. Ku and A. G. Eguiluz, Phys. Rev. Lett. 89, 126401 (2002). 10.1103/PhysRevLett.89.126401
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 126401
-
-
Ku, W.1
Eguiluz, A.G.2
-
39
-
-
37549018538
-
-
10.1080/00268970701757875
-
P. Echenique and J. L. Alonso, Mol. Phys. 105, 3057 (2007). 10.1080/00268970701757875
-
(2007)
Mol. Phys.
, vol.105
, pp. 3057
-
-
Echenique, P.1
Alonso, J.L.2
-
40
-
-
2342430094
-
-
10.1103/RevModPhys.23.69;
-
C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951) 10.1103/RevModPhys.23.69
-
(1951)
Rev. Mod. Phys.
, vol.23
, pp. 69
-
-
Roothaan, C.C.J.1
-
42
-
-
67650027470
-
-
The uniform power mesh discretizes the half-interval [-β,- β 2] ([- β 2, 0]) by p-1 bisections of the most lower (upper) part and introduces, in each division, an evenly spaced grid of u subdivisions. With the integers u and p the total number of grid points is nm =2up+1 and the smallest (largest) mesh spacing is 1 2 β/ (2p-1 u) [β/ (4u)].
-
The uniform power mesh discretizes the half-interval [-β,- β 2] ([- β 2, 0]) by p-1 bisections of the most lower (upper) part and introduces, in each division, an evenly spaced grid of u subdivisions. With the integers u and p the total number of grid points is nm =2up+1 and the smallest (largest) mesh spacing is 1 2 β/ (2p-1 u) [β/ (4u)].
-
-
-
-
43
-
-
0037087906
-
-
10.1103/PhysRevB.65.115312
-
S. A. Mikhailov, Phys. Rev. B 65, 115312 (2002). 10.1103/PhysRevB.65. 115312
-
(2002)
Phys. Rev. B
, vol.65
, pp. 115312
-
-
Mikhailov, S.A.1
-
44
-
-
67650053147
-
-
Quantum Monte Carlo [e.g., path integral Monte Carlo simulations (Refs.)], as a first-principle many-body approach, accounts for all correlation effects and yields numerically exact results.
-
Quantum Monte Carlo [e.g., path integral Monte Carlo simulations (Refs.)], as a first-principle many-body approach, accounts for all correlation effects and yields numerically exact results.
-
-
-
-
45
-
-
67650024402
-
-
Diploma thesis, Kiel University
-
K. Balzer, Diploma thesis, Kiel University, 2007.
-
(2007)
-
-
Balzer, K.1
-
48
-
-
34247175876
-
-
10.1088/1367-2630/9/4/093
-
U. De Giovannini, F. Cavaliere, R. Cenni, M. Sassetti, and B. Kramer, New J. Phys. 9, 93 (2007). 10.1088/1367-2630/9/4/093
-
(2007)
New J. Phys.
, vol.9
, pp. 93
-
-
De Giovannini, U.1
Cavaliere, F.2
Cenni, R.3
Sassetti, M.4
Kramer, B.5
-
50
-
-
0030282199
-
-
10.1016/0038-1098(96)00504-2
-
H. Haug and L. Banyai, Solid State Commun. 100, 303 (1996). 10.1016/0038-1098(96)00504-2
-
(1996)
Solid State Commun.
, vol.100
, pp. 303
-
-
Haug, H.1
Banyai, L.2
-
51
-
-
67650055570
-
-
The finite peak width is not a numerical artifact and remains even at low temperatures and for larger basis dimensions. The reason is, most likely, the self-consistency of the solution of the KBE together with an incomplete compensation of imaginary parts of the self-energy on the second Born level.
-
The finite peak width is not a numerical artifact and remains even at low temperatures and for larger basis dimensions. The reason is, most likely, the self-consistency of the solution of the KBE together with an incomplete compensation of imaginary parts of the self-energy on the second Born level.
-
-
-
-
52
-
-
42549108185
-
-
10.1103/PhysRevLett.100.166804
-
K. S. Thygesen, Phys. Rev. Lett. 100, 166804 (2008). 10.1103/PhysRevLett. 100.166804
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 166804
-
-
Thygesen, K.S.1
|