메뉴 건너뛰기




Volumn 69, Issue 2, 2001, Pages 213-248

Competitive on-line statistics

Author keywords

Bayes's rule; Competitive on line algorithms; Linear regression; Prequential statistics; Worst case analysis

Indexed keywords


EID: 0035413537     PISSN: 03067734     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1751-5823.2001.tb00457.x     Document Type: Review
Times cited : (276)

References (73)
  • 2
    • 0032140937 scopus 로고    scopus 로고
    • Tracking the best disjunction
    • Auer, P. & Warmuth, M.K. (1998). Tracking the best disjunction. Machine Learning, 32, 127-150.
    • (1998) Machine Learning , vol.32 , pp. 127-150
    • Auer, P.1    Warmuth, M.K.2
  • 3
    • 0001912835 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • Machine Learning. San Francisco, CA: Morgan Kaufmann
    • Azoury, K.S. & Warmuth, M.K. (1999). Relative loss bounds for on-line density estimation with the exponential family of distributions. To appear in Machine Learning. An extended abstract appeared in Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 31-40, San Francisco, CA: Morgan Kaufmann.
    • (1999) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence , pp. 31-40
    • Azoury, K.S.1    Warmuth, M.K.2
  • 4
    • 0033901631 scopus 로고    scopus 로고
    • Asymptotic minimax regret for data compression, gambling, and prediction
    • Barron, A.R. & Xie, Q. (2000). Asymptotic minimax regret for data compression, gambling, and prediction. IEEE Transactions on Information Theory, 46, 431-445.
    • (2000) IEEE Transactions on Information Theory , vol.46 , pp. 431-445
    • Barron, A.R.1    Xie, Q.2
  • 6
    • 0033904366 scopus 로고    scopus 로고
    • On-line learning and the metrical task system problem
    • Blum, A. & Burch, C. (2000). On-line learning and the metrical task system problem. Machine Learning, 39, 35-38.
    • (2000) Machine Learning , vol.39 , pp. 35-38
    • Blum, A.1    Burch, C.2
  • 7
    • 0032686447 scopus 로고    scopus 로고
    • Universal portfolios with and without transaction costs
    • Blum, A. & Kalai, A. (1999). Universal portfolios with and without transaction costs. Machine Learning, 35, 193-205.
    • (1999) Machine Learning , vol.35 , pp. 193-205
    • Blum, A.1    Kalai, A.2
  • 12
    • 0030145382 scopus 로고    scopus 로고
    • Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent
    • Cesa-Bianchi, N., Long, P.M. & Warmuth, M.K. (1996). Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural Networks, 7, 604-619.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 604-619
    • Cesa-Bianchi, N.1    Long, P.M.2    Warmuth, M.K.3
  • 14
    • 0002138061 scopus 로고
    • Jeffreys' prior is asymptotically least favourable under entropy risk
    • Clarke, B. & Barron, A.R. (1994). Jeffreys' prior is asymptotically least favourable under entropy risk. Journal of Statistical Planning and Inference, 41, 37-60.
    • (1994) Journal of Statistical Planning and Inference , vol.41 , pp. 37-60
    • Clarke, B.1    Barron, A.R.2
  • 16
    • 0001345686 scopus 로고    scopus 로고
    • Context-sensitive learning methods for text categorization
    • Cohen, W.W. & Singer, Y. (1999). Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17, 141-173.
    • (1999) ACM Transactions on Information Systems , vol.17 , pp. 141-173
    • Cohen, W.W.1    Singer, Y.2
  • 17
    • 84986753988 scopus 로고
    • Universal portfolios
    • Cover, T. (1991). Universal portfolios. Mathematical Finance, 1, 1-29.
    • (1991) Mathematical Finance , vol.1 , pp. 1-29
    • Cover, T.1
  • 20
    • 0000415224 scopus 로고
    • Probability forecasting
    • Eds. S. Kotz, N.L. Johnson and C.B. Read, New York: Wiley-Interscience
    • Dawid, A.P. (1986). Probability forecasting. In Encyclopedia of Statistical Sciences, volume 7. Eds. S. Kotz, N.L. Johnson and C.B. Read, pp. 210-218. New York: Wiley-Interscience.
    • (1986) Encyclopedia of Statistical Sciences , vol.7 , pp. 210-218
    • Dawid, A.P.1
  • 21
    • 0001851486 scopus 로고
    • Fisherian inference in likelihood and prequential frames of reference
    • Dawid, A.P. (1991). Fisherian inference in likelihood and prequential frames of reference (with discussion). Journal of the Royal Statistical Society B, 53, 79-109.
    • (1991) Journal of the Royal Statistical Society B , vol.53 , pp. 79-109
    • Dawid, A.P.1
  • 25
    • 84956865170 scopus 로고    scopus 로고
    • On relative loss bounds in generalized linear regression
    • Fundamentals of Computation Theory, 12th International Symposium, Eds. C. Ciobanu and G. Paun. Springer
    • Forster, J. (1999). On relative loss bounds in generalized linear regression. In Fundamentals of Computation Theory, 12th International Symposium, Eds. C. Ciobanu and G. Paun. Lecture Notes in Computer Science, vol. 1684, 269-280, Springer.
    • (1999) Lecture Notes in Computer Science , vol.1684 , pp. 269-280
    • Forster, J.1
  • 26
    • 0000349751 scopus 로고
    • Prediction in the worst case
    • Foster, D.P. (1991). Prediction in the worst case. Annals of Statistics, 19, 1084-1090.
    • (1991) Annals of Statistics , vol.19 , pp. 1084-1090
    • Foster, D.P.1
  • 27
    • 0030387369 scopus 로고    scopus 로고
    • Predicting a binary sequence almost as well as the optimal biased coin
    • New York: Association for Computing Machinery
    • Freund, Y. (1996). Predicting a binary sequence almost as well as the optimal biased coin. In Proceedings of the 9th Annual Conference on Computational Learning Theory, pp. 89-98. New York: Association for Computing Machinery.
    • (1996) Proceedings of the 9th Annual Conference on Computational Learning Theory , pp. 89-98
    • Freund, Y.1
  • 29
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y. & Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 30
    • 0002267135 scopus 로고    scopus 로고
    • Adaptive game playing using multiplicative weights
    • Freund, Y. & Schapire, R.E. (1999). Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29, 79-103.
    • (1999) Games and Economic Behavior , vol.29 , pp. 79-103
    • Freund, Y.1    Schapire, R.E.2
  • 33
  • 35
    • 0031122905 scopus 로고    scopus 로고
    • Predicting nearly as well as the best pruning of a decision tree
    • Helmbold, D.P. & Schapire, R.E. (1997). Predicting nearly as well as the best pruning of a decision tree. Machine Learning, 27, 51-68.
    • (1997) Machine Learning , vol.27 , pp. 51-68
    • Helmbold, D.P.1    Schapire, R.E.2
  • 38
    • 84957075608 scopus 로고    scopus 로고
    • General linear relations among different types of predictive complexity
    • Proceedings of the 10th International Conference on Algorithmic Learning Theory, Accepted for publication in Theoretical Computer Science
    • Kalnishkan, Y. (1999). General linear relations among different types of predictive complexity. In Proceedings of the 10th International Conference on Algorithmic Learning Theory, volume 1720 of Lecture Notes in Artificial Intelligence, pp. 323-334. Accepted for publication in Theoretical Computer Science.
    • (1999) Lecture Notes in Artificial Intelligence , vol.1720 , pp. 323-334
    • Kalnishkan, Y.1
  • 39
    • 0033281374 scopus 로고    scopus 로고
    • Linear relations between square-loss and kolmogorov complexity
    • New York: Association for Computing Machinery
    • Kalnishkan, Y. (1999). Linear relations between square-loss and Kolmogorov complexity. In Proceedings of the 12th Annual Conference on Computational Learning Theory, pp. 226-232. New York: Association for Computing Machinery.
    • (1999) Proceedings of the 12th Annual Conference on Computational Learning Theory , pp. 226-232
    • Kalnishkan, Y.1
  • 40
    • 84974718913 scopus 로고    scopus 로고
    • Complexity approximation principle and Rissanen's approach to real-valued parameters
    • 11th European Conference on Machine Learning, Springer
    • Kalnishkan, Y. (2000). Complexity Approximation Principle and Rissanen's approach to real-valued parameters. In 11th European Conference on Machine Learning, vol. 1810 of Lecture Notes in Artificial Intelligence, Springer.
    • Lecture Notes in Artificial Intelligence , vol.1810 , Issue.2000
    • Kalnishkan, Y.1
  • 42
    • 0008815681 scopus 로고    scopus 로고
    • Exponential gradient versus gradient descent for linear predictors
    • Kivinen, J. & Warmuth, M.K. (1997). Exponential Gradient versus Gradient Descent for linear predictors. Information and Computation, 132, 1-63.
    • (1997) Information and Computation , vol.132 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.K.2
  • 43
    • 84947774618 scopus 로고    scopus 로고
    • Averaging expert predictions
    • Computational Learning Theory: 4th European Conference, Eds. P. Fischer and H.U. Simon, Berlin: Springer
    • Kivinen, J. & Warmuth, M.K. (1999). Averaging expert predictions. In Computational Learning Theory: 4th European Conference, volume 1572 of Lecture Notes in Artificial Intelligence, Eds. P. Fischer and H.U. Simon, pp. 153-167. Berlin: Springer.
    • (1999) Lecture Notes in Artificial Intelligence , vol.1572 , pp. 153-167
    • Kivinen, J.1    Warmuth, M.K.2
  • 46
    • 0030703798 scopus 로고    scopus 로고
    • An efficient extension to mixture techniques for prediction and decision trees
    • Association for Computing Machinery
    • Pereira, F. & Singer, Y. (1997). An efficient extension to mixture techniques for prediction and decision trees. In Proceedings, 10th Annual Conference on Computational Learning Theory, pp. 114-121. Association for Computing Machinery.
    • (1997) Proceedings, 10th Annual Conference on Computational Learning Theory , pp. 114-121
    • Pereira, F.1    Singer, Y.2
  • 48
    • 0007300836 scopus 로고
    • Special issue on competitive on-line algorithms
    • Raghavan, P. (Ed.) (1994). Special issue on competitive on-line algorithms. Algorithmica, 11, 1-91.
    • (1994) Algorithmica , vol.11 , pp. 1-91
    • Raghavan, P.1
  • 49
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. Annals of Statistics, 11, 416-431.
    • (1983) Annals of Statistics , vol.11 , pp. 416-431
    • Rissanen, J.1
  • 52
    • 4544279425 scopus 로고
    • A formal theory of inductive inference. Parts I and II
    • Solomonoff, R.J. (1964). A formal theory of inductive inference. Parts I and II. Information and Control, 7, 1-22 and 224-254.
    • (1964) Information and Control , vol.7 , pp. 1-22
    • Solomonoff, R.J.1
  • 53
    • 0007158850 scopus 로고    scopus 로고
    • Predicting nearly as well as the best pruning of a decision tree through dynamic programming scheme
    • Takimoto, E., Maruoka, A. & Vovk, V. (1998). Predicting nearly as well as the best pruning of a decision tree through dynamic programming scheme. To appear in Theoretical Computer Science.
    • (1998) Theoretical Computer Science
    • Takimoto, E.1    Maruoka, A.2    Vovk, V.3
  • 54
    • 84958055998 scopus 로고    scopus 로고
    • Probability theory for the Brier game
    • Theoretical Computer Science. Accepted for publication. Preliminary version in Ming Li and Akira Maruoka, editors, Lecture Notes in Computer Science, 1997. Full version: Technical Report CSD-TR-97-09, Department of Computer Science, Royal Holloway, University of London, revised February 1998
    • Vovk, V. (1998). Probability theory for the Brier game. Theoretical Computer Science. Accepted for publication. Preliminary version in Ming Li and Akira Maruoka, editors, Algorithmic Learning Theory, Lecture Notes in Computer Science, volume 1316, pp. 323-338, 1997. Full version: Technical Report CSD-TR-97-09, Department of Computer Science, Royal Holloway, University of London, revised February 1998.
    • (1998) Algorithmic Learning Theory , vol.1316 , pp. 323-338
    • Vovk, V.1
  • 55
    • 0000727615 scopus 로고
    • On a randomness criterion
    • Vovk, V. (1987). On a randomness criterion. Soviet Mathematics Doklady, 35, 656-660.
    • (1987) Soviet Mathematics Doklady , vol.35 , pp. 656-660
    • Vovk, V.1
  • 57
    • 0026821397 scopus 로고
    • Universal forecasting algorithms
    • Vovk, V. (1992). Universal forecasting algorithms. Information and Computation, 96, 245-277.
    • (1992) Information and Computation , vol.96 , pp. 245-277
    • Vovk, V.1
  • 58
    • 0000591974 scopus 로고
    • A logic of probability, with application to the foundations of statistics
    • Vovk, V. (1993). A logic of probability, with application to the foundations of statistics (with discussion). Journal of the Royal Statistical Society B, 55,317-351.
    • (1993) Journal of the Royal Statistical Society B , vol.55 , pp. 317-351
    • Vovk, V.1
  • 59
    • 84898975254 scopus 로고    scopus 로고
    • Competitive on-line linear regression
    • Eds. M.I. Jordan, M.J. Kearns and S.A. Solla, Cambridge, MA: MIT Press
    • Vovk, V. (1998). Competitive on-line linear regression. In Advances in Neural Information Processing Systems, Eds. M.I. Jordan, M.J. Kearns and S.A. Solla, pp. 364-370. Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , pp. 364-370
    • Vovk, V.1
  • 60
    • 0032047115 scopus 로고    scopus 로고
    • A game of prediction with expert advice
    • Vovk, V. (1998). A game of prediction with expert advice. Journal of Computer and System Sciences, 56, 153-173.
    • (1998) Journal of Computer and System Sciences , vol.56 , pp. 153-173
    • Vovk, V.1
  • 62
    • 0032652062 scopus 로고    scopus 로고
    • Derandomizing stochastic prediction strategies
    • Vovk, V. (1999). Derandomizing stochastic prediction strategies. Machine Learning, 35(3), 247-282.
    • (1999) Machine Learning , vol.35 , Issue.3 , pp. 247-282
    • Vovk, V.1
  • 63
    • 0032646993 scopus 로고    scopus 로고
    • Complexity approximation principle
    • Vovk, V. & Gammerman, A. (1999). Complexity Approximation Principle. Computer Journal, 42, 318-322.
    • (1999) Computer Journal , vol.42 , pp. 318-322
    • Vovk, V.1    Gammerman, A.2
  • 66
    • 0007158851 scopus 로고    scopus 로고
    • Technical Report CLRC-TR-99-06, Computer Learning Research Centre, Royal Holloway, University of London
    • V'yugin, V.V. (1999). Does snooping help? Technical Report CLRC-TR-99-06, Computer Learning Research Centre, Royal Holloway, University of London. Can be downloaded from http://www.clrc.rhul.ac.uk.
    • (1999) Does Snooping Help?
    • V'yugin, V.V.1
  • 67
    • 0007227871 scopus 로고    scopus 로고
    • Technical Report CLRC-TR-99-01, Computer Learning Research Centre, Royal Holloway, University of London
    • V'yugin, V.V. (1999). Most sequences are predictable. Technical Report CLRC-TR-99-01, Computer Learning Research Centre, Royal Holloway, University of London. Can be downloaded from http://www.clrc.rhul.ac.uk.
    • (1999) Most Sequences are Predictable
    • V'yugin, V.V.1
  • 68
    • 85037397596 scopus 로고    scopus 로고
    • Technical Report CLRC-TR-00-05, Computer Learning Research Centre, Royal Holloway, University of London
    • V'yugin, V.V. (2000). Sub-optimal measures of predictive complexity. Technical Report CLRC-TR-00-05, Computer Learning Research Centre, Royal Holloway, University of London. Can be downloaded from http://www.clrc.rhul.ac.uk.
    • (2000) Sub-optimal Measures of Predictive Complexity
    • V'yugin, V.V.1
  • 69
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace, C.S. & Boulton, D.M. (1968). An information measure for classification. Computer Journal, 11, 185-195.
    • (1968) Computer Journal , vol.11 , pp. 185-195
    • Wallace, C.S.1    Boulton, D.M.2
  • 72
    • 0007159886 scopus 로고    scopus 로고
    • A decision-theoretic extension of stochastic complexity and its applications to learning
    • Yamanishi, K. (1998). A decision-theoretic extension of stochastic complexity and its applications to learning. IEEE Transactions on Information Theory, 20, 100-114.
    • (1998) IEEE Transactions on Information Theory , vol.20 , pp. 100-114
    • Yamanishi, K.1
  • 73
    • 0031630775 scopus 로고    scopus 로고
    • Minimax relative loss analysis for sequential prediction algorithms using parametric hypotheses
    • New York: Association for Computing Machinery
    • Yamanishi, K. (1998). Minimax relative loss analysis for sequential prediction algorithms using parametric hypotheses. In Proceedings of the 11th Annual Conference on Computational Learning Theory, pp. 32-43. New York: Association for Computing Machinery.
    • (1998) Proceedings of the 11th Annual Conference on Computational Learning Theory , pp. 32-43
    • Yamanishi, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.