메뉴 건너뛰기




Volumn 4, Issue 2, 2008, Pages 80-86

Sensitivity analysis applied to artificial neural networks for forecasting time series

Author keywords

ARIMA models; Artificial neural networks; Sensitivity analysis; Time series forecasting

Indexed keywords


EID: 69949110985     PISSN: 16141881     EISSN: 16142241     Source Type: Journal    
DOI: 10.1027/1614-2241.4.2.80     Document Type: Article
Times cited : (6)

References (35)
  • 1
    • 58349090371 scopus 로고    scopus 로고
    • Stock market forecasting: Artificial neural network and linear regression comparison in an emerging market
    • Altay, E., & Satman, M.H. (2005). Stock market forecasting: Artificial neural network and linear regression comparison in an emerging market. Journal of Financial Management and Analysis, 18, 18-33.
    • (2005) Journal of Financial Management and Analysis , vol.18 , pp. 18-33
    • Altay, E.1    Satman, M.H.2
  • 4
    • 85167635975 scopus 로고    scopus 로고
    • Bahbah, A.G., & Girgis, A.A. (1999). Input feature selection for real-time transient stability assessment for artificial neural network (ANN) using ANN sensitivity analysis. In IEEE (Ed.), Proceedings of the 21st International Conference on Power Industry Computer Applications (pp. 295-300). Piscataway, NJ: IEEE.
    • Bahbah, A.G., & Girgis, A.A. (1999). Input feature selection for real-time transient stability assessment for artificial neural network (ANN) using ANN sensitivity analysis. In IEEE (Ed.), Proceedings of the 21st International Conference on Power Industry Computer Applications (pp. 295-300). Piscataway, NJ: IEEE.
  • 5
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • Battiti, R. (1992). First- and second-order methods for learning: Between steepest descent and Newton's method. Neural Computation, 4, 141-166.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 6
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E.B., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1, 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 9
    • 84984483782 scopus 로고
    • Evaluation of extrapolative forecasting methods: Results of academicians and practitioners
    • Carbone, R., & Armstrong, J.S. (1982). Evaluation of extrapolative forecasting methods: Results of academicians and practitioners. Journal of Forecasting, 1, 215-217.
    • (1982) Journal of Forecasting , vol.1 , pp. 215-217
    • Carbone, R.1    Armstrong, J.S.2
  • 10
    • 0028727281 scopus 로고
    • Sensitivity analysis on neural networks for meteorological variable forecasting
    • J. Vlontzos, J.N. Hwang, & E. Wilson Eds, New York: IEEE
    • Castellanos, J., Pazos, A., Ríos, J., & Zafra, J.L. (1994). Sensitivity analysis on neural networks for meteorological variable forecasting. In J. Vlontzos, J.N. Hwang, & E. Wilson (Eds.), Proceedings of IEEE Workshop on Neural Networks for Signal Processing (pp. 587-595). New York: IEEE.
    • (1994) Proceedings of IEEE Workshop on Neural Networks for Signal Processing , pp. 587-595
    • Castellanos, J.1    Pazos, A.2    Ríos, J.3    Zafra, J.L.4
  • 11
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematical Control, Signal and Systems, 2, 303-314.
    • (1989) Mathematical Control, Signal and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 13
    • 0032599451 scopus 로고    scopus 로고
    • Time series prediction with genetic-algorithm designed neural networks: An empirical comparison with modern statistical models
    • Hansen, J.V., McDonald, J.B., & Nelson, R.D. (1999). Time series prediction with genetic-algorithm designed neural networks: An empirical comparison with modern statistical models. Computational Intelligence, 15, 171-184.
    • (1999) Computational Intelligence , vol.15 , pp. 171-184
    • Hansen, J.V.1    McDonald, J.B.2    Nelson, R.D.3
  • 14
    • 0034976467 scopus 로고    scopus 로고
    • Investigation of the nonlinearity in the heart rate dynamics
    • Haque, M.A., Hasan, M.K., & Tazawa, H. (2001). Investigation of the nonlinearity in the heart rate dynamics. Medical Engineering and Physics, 23, 111-115.
    • (2001) Medical Engineering and Physics , vol.23 , pp. 111-115
    • Haque, M.A.1    Hasan, M.K.2    Tazawa, H.3
  • 15
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 33847397869 scopus 로고    scopus 로고
    • Analysis of bioclimatic time series and their neural network-based classification to characterize drought risk patterns in South Italy
    • Incerti, G., Feoli, E., Salvati, L., Brunetti, A., & Giovacchini, A. (2007). Analysis of bioclimatic time series and their neural network-based classification to characterize drought risk patterns in South Italy. International Journal of Biometeorology, 51, 253-263.
    • (2007) International Journal of Biometeorology , vol.51 , pp. 253-263
    • Incerti, G.1    Feoli, E.2    Salvati, L.3    Brunetti, A.4    Giovacchini, A.5
  • 17
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10, 215-236.
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 18
    • 0032997601 scopus 로고    scopus 로고
    • A neural network model to forecast Japanese demand for travel to Hong Kong
    • Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20, 89-97.
    • (1999) Tourism Management , vol.20 , pp. 89-97
    • Law, R.1    Au, N.2
  • 21
    • 0344961870 scopus 로고    scopus 로고
    • Numeric sensitivity analysis applied to feedforward neural networks
    • Montaño, J.J., & Palmer, A. (2003). Numeric sensitivity analysis applied to feedforward neural networks. Neural Computing and Applications, 12, 119-125.
    • (2003) Neural Computing and Applications , vol.12 , pp. 119-125
    • Montaño, J.J.1    Palmer, A.2
  • 22
    • 33745933319 scopus 로고    scopus 로고
    • Designing an artificial neural network for forecasting tourism time series
    • Palmer, A., Montaño, J.J., & Sesé, A. (2006). Designing an artificial neural network for forecasting tourism time series. Tourism Management, 27, 781-790.
    • (2006) Tourism Management , vol.27 , pp. 781-790
    • Palmer, A.1    Montaño, J.J.2    Sesé, A.3
  • 23
    • 69949093532 scopus 로고    scopus 로고
    • Modeling and forecasting the energy consumption in Taiwan using artificial neural networks
    • Pao, H.T. (2006). Modeling and forecasting the energy consumption in Taiwan using artificial neural networks. The Journal of American Academy of Business, 8, 113-119.
    • (2006) The Journal of American Academy of Business , vol.8 , pp. 113-119
    • Pao, H.T.1
  • 24
    • 0029728751 scopus 로고    scopus 로고
    • Using a neural network to forecast visitor behavior
    • Pattie, D.C., & Snyder, J. (1996). Using a neural network to forecast visitor behavior. Annals of Tourism Research, 23, 151-164.
    • (1996) Annals of Tourism Research , vol.23 , pp. 151-164
    • Pattie, D.C.1    Snyder, J.2
  • 25
    • 85167641261 scopus 로고    scopus 로고
    • Rambhia, A.H., Glenny, R., & Hwang, J. (1999). Critical input data channels selection for progressive work exercise test by neural network sensitivity analysis. In IEEE (Ed.), IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 1097-1100). Piscataway, NJ: IEEE.
    • Rambhia, A.H., Glenny, R., & Hwang, J. (1999). Critical input data channels selection for progressive work exercise test by neural network sensitivity analysis. In IEEE (Ed.), IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 1097-1100). Piscataway, NJ: IEEE.
  • 26
    • 0003444646 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart & J.L. McClelland Eds, Cambridge, MA: MIT Press
    • Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by error propagation. In D.E. Rumelhart & J.L. McClelland (Eds.), Parallel distributed processing (pp. 318-362). Cambridge, MA: MIT Press.
    • (1986) Parallel distributed processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 0006736447 scopus 로고    scopus 로고
    • SPSS Inc, Chicago: SPSS Inc
    • SPSS Inc. (1998). Neural Connection 2.1. Chicago: SPSS Inc.
    • (1998) Neural Connection 2.1
  • 33
    • 0031283672 scopus 로고    scopus 로고
    • A comparative analysis of neural networks and statistical methods for predicting consumer choice
    • West, P.M., Brockett, P.L., & Golden, L.L. (1997). A comparative analysis of neural networks and statistical methods for predicting consumer choice. Marketing Science, 16, 370-391.
    • (1997) Marketing Science , vol.16 , pp. 370-391
    • West, P.M.1    Brockett, P.L.2    Golden, L.L.3
  • 34
    • 0033911487 scopus 로고    scopus 로고
    • Neural network training for prediction of climatological time series, regularized by minimization of the generalized cross-validation function
    • Yuval, A. (2000). Neural network training for prediction of climatological time series, regularized by minimization of the generalized cross-validation function. Monthly Weather Review, 128, 1456-1473.
    • (2000) Monthly Weather Review , vol.128 , pp. 1456-1473
    • Yuval, A.1
  • 35
    • 34548167332 scopus 로고    scopus 로고
    • An investigation and comparison of artificial neural network and time series models for Chinese food grain price
    • Zou, H.F., Xia, G.P., Yang, F.T., & Wang, H.Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price. Neurocomputing, 70, 2913-2923.
    • (2007) Neurocomputing , vol.70 , pp. 2913-2923
    • Zou, H.F.1    Xia, G.P.2    Yang, F.T.3    Wang, H.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.