메뉴 건너뛰기




Volumn 128, Issue 5, 2000, Pages 1456-1473

Neural network training for prediction of climatological time series, regularized by minimization of the generalized cross-validation function

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CLIMATOLOGY; PREDICTION; TIME SERIES;

EID: 0033911487     PISSN: 00270644     EISSN: None     Source Type: Journal    
DOI: 10.1175/1520-0493(2000)128<1456:NNTFPO>2.0.CO;2     Document Type: Article
Times cited : (16)

References (36)
  • 1
    • 0001011612 scopus 로고
    • Learning from hints in neural networks
    • Abu-Mostafa, Y., 1990: Learning from hints in neural networks. J. Complex., 6, 192-198.
    • (1990) J. Complex. , vol.6 , pp. 192-198
    • Abu-Mostafa, Y.1
  • 2
    • 0000918302 scopus 로고
    • Hints and the VC dimension
    • _, 1993: Hints and the VC dimension. Neural Comput., 5, 278-288.
    • (1993) Neural Comput. , vol.5 , pp. 278-288
  • 3
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • Allen, D., 1974: The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 16, 125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.1
  • 4
    • 0028669614 scopus 로고
    • Long-lead seasonal forecasting - Where do we stand?
    • Barnston, A. G., and Coauthors, 1994: Long-lead seasonal forecasting - Where do we stand? Bull. Amer. Meteor. Soc., 75, 2097-2114.
    • (1994) Bull. Amer. Meteor. Soc. , vol.75 , pp. 2097-2114
    • Barnston, A.G.1
  • 6
    • 85025505893 scopus 로고
    • Generalization performance of overtrained back-propagation
    • L. B. Almedia and C. J. Wellekens, Eds., Springer-Verlag
    • Chauvin, Y., 1990: Generalization performance of overtrained back-propagation. Neural Networks. EURASIP Workshop Proceedings, L. B. Almedia and C. J. Wellekens, Eds., Springer-Verlag, 46-55.
    • (1990) Neural Networks. EURASIP Workshop Proceedings , pp. 46-55
    • Chauvin, Y.1
  • 8
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G., 1989: Approximation by superpositions of a sigmoidal function. Math. Control, Signal, Syst., 2, 303-314.
    • (1989) Math. Control, Signal, Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 9
    • 0003396255 scopus 로고    scopus 로고
    • The Math Works, Inc. [Available from The Math Works, Inc., 24 Prime Park Way, Natick, MA 01760-1500.]
    • Demuth, H., and M. Beale, 1998: Neural Network Toolbox version 3.1. The Math Works, Inc. [Available from The Math Works, Inc., 24 Prime Park Way, Natick, MA 01760-1500.]
    • (1998) Neural Network Toolbox Version 3.1
    • Demuth, H.1    Beale, M.2
  • 10
    • 0027294340 scopus 로고
    • Improving models selection by nonconvergent methods
    • Finnoff, W., F. Hergert, and A. G. Zimmermann, 1993: Improving models selection by nonconvergent methods. Neural Networks, 6, 771-783.
    • (1993) Neural Networks , vol.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, A.G.3
  • 11
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., E. Bienenstock, and R. Doursat, 1992: Neural networks and the bias/variance dilemma. Neural Comput., 4, 1-58.
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 12
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub, G. H., M. Heath, and G. Wahba, 1979: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21, 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 13
    • 0000598965 scopus 로고    scopus 로고
    • A novel neural network design for long range prediction of rainfall pattern
    • Goswami, P., and Srividya, 1996: A novel neural network design for long range prediction of rainfall pattern. Current Sci., 70, 447-457.
    • (1996) Current Sci. , vol.70 , pp. 447-457
    • Goswami, P.1    Srividya2
  • 14
    • 0028571018 scopus 로고
    • Reconstruction of the El-Niño attractor with neural networks
    • Grieger, B., and M. Latif, 1994: Reconstruction of the El-Niño attractor with neural networks. Climate Dyn., 10, 267-276.
    • (1994) Climate Dyn. , vol.10 , pp. 267-276
    • Grieger, B.1    Latif, M.2
  • 15
    • 0033933643 scopus 로고    scopus 로고
    • A GCV based method for nonlinear ill-posed problems
    • in press
    • Haber, E., and D. W. Oldenburg, 2000: A GCV based method for nonlinear ill-posed problems. Comput. Geosci., in press.
    • (2000) Comput. Geosci.
    • Haber, E.1    Oldenburg, D.W.2
  • 16
    • 0029509566 scopus 로고
    • Prediction of the summer rainfall over South Africa
    • Hastenrath, S., L. Greischar, and J. van Heerden, 1995: Prediction of the summer rainfall over South Africa. J. Climate, 8, 1511-1518.
    • (1995) J. Climate , vol.8 , pp. 1511-1518
    • Hastenrath, S.1    Greischar, L.2    Van Heerden, J.3
  • 17
    • 0030417301 scopus 로고    scopus 로고
    • Climate downscaling: Techniques and application
    • Hewitson, B. C., and R. G. Crane, 1996: Climate downscaling: Techniques and application. Climate Res., 7, 85-95.
    • (1996) Climate Res. , vol.7 , pp. 85-95
    • Hewitson, B.C.1    Crane, R.G.2
  • 18
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik, K., M. Stinchcombe, and H. White, 1989: Multilayer feed-forward networks are universal approximators. Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0021585272 scopus 로고
    • Irregularity: A fundamental property of the atmosphere
    • Lorenz, E. N., 1984: Irregularity: A fundamental property of the atmosphere. Tellus, 36A, 98-110.
    • (1984) Tellus , vol.36 A , pp. 98-110
    • Lorenz, E.N.1
  • 20
    • 0025224683 scopus 로고
    • Can chaos and intransitivity lead to interannual variability?
    • _, 1990: Can chaos and intransitivity lead to interannual variability? Tellus, 42A, 378-389.
    • (1990) Tellus , vol.42 A , pp. 378-389
  • 21
    • 0001441372 scopus 로고
    • Probable networks and the plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • MacKay, D. J. C., 1995: Probable networks and the plausible predictions - A review of practical Bayesian methods for supervised neural networks. Network Comput. Neural Syst., 6, 469-505.
    • (1995) Network Comput. Neural Syst. , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 22
    • 0001495043 scopus 로고
    • Cross-validation in statistical forecast models
    • Michaelsen, J., 1987: Cross-validation in statistical forecast models. J. Climate. Appl. Meteor., 26, 1589-1600.
    • (1987) J. Climate. Appl. Meteor. , vol.26 , pp. 1589-1600
    • Michaelsen, J.1
  • 23
    • 0028584611 scopus 로고
    • Predicting Indian monsoon rainfall - A neural network approach
    • Navone, H. D., and H. A. Ceccatto, 1994: Predicting Indian monsoon rainfall - A neural network approach. Climate Dyn., 10, 305-312.
    • (1994) Climate Dyn. , vol.10 , pp. 305-312
    • Navone, H.D.1    Ceccatto, H.A.2
  • 24
    • 0028581380 scopus 로고
    • Improved global sea surface temperature analysis using optimum interpolation
    • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7, 929-948.
    • (1994) J. Climate , vol.7 , pp. 929-948
    • Reynolds, R.W.1    Smith, T.M.2
  • 25
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart, J. L. McClelland, and P. R. Groups, Eds., The MIT Press
    • Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning internal representations by error propagation. Parallel Distributed Processing, D. E. Rumelhart, J. L. McClelland, and P. R. Groups, Eds., Vol. 1, The MIT Press, 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 26
    • 0030485372 scopus 로고    scopus 로고
    • Reconstruction of historical sea surface temperatures using orthogonal functions
    • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using orthogonal functions. J. Climate, 9, 1403-1420.
    • (1996) J. Climate , vol.9 , pp. 1403-1420
    • Smith, T.M.1    Reynolds, R.W.2    Livezey, R.E.3    Stokes, D.C.4
  • 27
    • 0034035880 scopus 로고    scopus 로고
    • Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures
    • Tang, B., W. W. Hsieh, A. H. Monahan, and F. T. Tangang, 2000: Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures. J. Climate, 13, 287-293.
    • (2000) J. Climate , vol.13 , pp. 287-293
    • Tang, B.1    Hsieh, W.W.2    Monahan, A.H.3    Tangang, F.T.4
  • 28
    • 0001275437 scopus 로고    scopus 로고
    • Forecasting the equatorial Pacific sea surface temperature by neural network models
    • Tangang, F. T., W. W. Hsieh, and B. Tang, 1997: Forecasting the equatorial Pacific sea surface temperature by neural network models. Climate Dyn., 13, 135-147.
    • (1997) Climate Dyn. , vol.13 , pp. 135-147
    • Tangang, F.T.1    Hsieh, W.W.2    Tang, B.3
  • 29
    • 0032522032 scopus 로고    scopus 로고
    • Forecasting the regional sea surface temperature of the tropical Pacific by neural network models, with wind stress and sea level pressure as predictors
    • _, _, and _, 1998a: Forecasting the regional sea surface temperature of the tropical Pacific by neural network models, with wind stress and sea level pressure as predictors. J. Geophys. Res., 103, 7511-7522.
    • (1998) J. Geophys. Res. , vol.103 , pp. 7511-7522
  • 30
    • 0031777214 scopus 로고    scopus 로고
    • Forecasting ENSO events: A neural network-extended EOF approach
    • _, B. Tang, A. H. Monahan, and W. W. Hsieh, 1998b: Forecasting ENSO events: A neural network-extended EOF approach. J. Climate, 11, 29-41.
    • (1998) J. Climate , vol.11 , pp. 29-41
    • Tang, B.1    Monahan, A.H.2    Hsieh, W.W.3
  • 32
    • 0000544453 scopus 로고
    • Practical approximate solutions to the linear operator equations when the data are noisy
    • Wahba, G., 1977: Practical approximate solutions to the linear operator equations when the data are noisy. SIAM J. Numer. Anal., 14, 651-667.
    • (1977) SIAM J. Numer. Anal. , vol.14 , pp. 651-667
    • Wahba, G.1
  • 34
    • 0009650570 scopus 로고
    • Generalization and regularization in nonlinear learning systems
    • M. A. Arbib, Ed., The MIT Press
    • _, 1995: Generalization and regularization in nonlinear learning systems. The Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed., The MIT Press, 426-430.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 426-430
  • 35
    • 0343881422 scopus 로고    scopus 로고
    • Time series analysis and prediction
    • P. Smolensky, M. C. Mozer, and D. E. Rumelhart, Eds., Lawrence Earlbaum
    • Weigend, A. S., 1996: Time series analysis and prediction. Mathematical Perspectives on Neural Networks, P. Smolensky, M. C. Mozer, and D. E. Rumelhart, Eds., Lawrence Earlbaum, 395-449.
    • (1996) Mathematical Perspectives on Neural Networks , pp. 395-449
    • Weigend, A.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.