-
3
-
-
41349111042
-
-
10.1103/PhysRevE.66.027202
-
C. Lopez, Phys. Rev. E 66, 027202 (2002). 10.1103/PhysRevE.66.027202
-
(2002)
Phys. Rev. e
, vol.66
, pp. 027202
-
-
Lopez, C.1
-
4
-
-
0037164996
-
-
10.1103/PhysRevLett.89.264501
-
J. H. E. Cartwright, M. O. Magnasco, O. Piro, and I. Tuval, Phys. Rev. Lett. 89, 264501 (2002). 10.1103/PhysRevLett.89.264501
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 264501
-
-
Cartwright, J.H.E.1
Magnasco, M.O.2
Piro, O.3
Tuval, I.4
-
5
-
-
37649031850
-
-
10.1103/PhysRevE.70.036203
-
Y. Do and Y. C. Lai, Phys. Rev. E 70, 036203 (2004). 10.1103/PhysRevE.70. 036203
-
(2004)
Phys. Rev. e
, vol.70
, pp. 036203
-
-
Do, Y.1
Lai, Y.C.2
-
6
-
-
33846102069
-
-
10.1063/1.2359231
-
I. J. Benczik, G. Karolyi, I. Scheuring, and T. Tél, Chaos 16, 043110 (2006). 10.1063/1.2359231
-
(2006)
Chaos
, vol.16
, pp. 043110
-
-
Benczik, I.J.1
Karolyi, G.2
Scheuring, I.3
Tél, T.4
-
7
-
-
37749032805
-
-
10.1103/PhysRevLett.99.264101
-
R. D. Vilela and A. E. Motter, Phys. Rev. Lett. 99, 264101 (2007). 10.1103/PhysRevLett.99.264101
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 264101
-
-
Vilela, R.D.1
Motter, A.E.2
-
8
-
-
41449116961
-
-
10.1016/j.physd.2007.09.027
-
G. Haller and T. Sapsis, Physica D 237, 573 (2008). 10.1016/j.physd.2007. 09.027
-
(2008)
Physica D
, vol.237
, pp. 573
-
-
Haller, G.1
Sapsis, T.2
-
9
-
-
0344272172
-
-
10.1146/annurev.fluid.35.101101.161125
-
R. A. Shaw, Annu. Rev. Fluid Mech. 35, 183 (2003). 10.1146/annurev.fluid. 35.101101.161125
-
(2003)
Annu. Rev. Fluid Mech.
, vol.35
, pp. 183
-
-
Shaw, R.A.1
-
13
-
-
23044508042
-
-
10.1063/1.1940367
-
J. Bec, A. Celani, M. Cencini, and S. Musacchio, Phys. Fluids 17, 073301 (2005). 10.1063/1.1940367
-
(2005)
Phys. Fluids
, vol.17
, pp. 073301
-
-
Bec, J.1
Celani, A.2
Cencini, M.3
Musacchio, S.4
-
14
-
-
50249085022
-
-
10.1103/PhysRevLett.101.084504
-
E. Calzavarini, M. Cencini, D. Lohse, and F. Toschi, Phys. Rev. Lett. 101, 084504 (2008). 10.1103/PhysRevLett.101.084504
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 084504
-
-
Calzavarini, E.1
Cencini, M.2
Lohse, D.3
Toschi, F.4
-
15
-
-
0022923683
-
-
10.1175/1520-0469(1986)043<1112:GSOAPI>2.0.CO;2
-
M. R. Maxey and S. Corrsin, J. Atmos. Sci. 43, 1112 (1986). 10.1175/1520-0469(1986)043<1112:GSOAPI>2.0.CO;2
-
(1986)
J. Atmos. Sci.
, vol.43
, pp. 1112
-
-
Maxey, M.R.1
Corrsin, S.2
-
16
-
-
0023142873
-
-
10.1017/S0022112087000193
-
M. R. Maxey, J. Fluid Mech. 174, 441 (1987). 10.1017/S0022112087000193
-
(1987)
J. Fluid Mech.
, vol.174
, pp. 441
-
-
Maxey, M.R.1
-
17
-
-
36849066156
-
-
10.1063/1.2766740
-
M. Wilkinson, B. Mehlig, S. Östlund, and K. P. Duncan, Phys. Fluids 19, 113303 (2007). 10.1063/1.2766740
-
(2007)
Phys. Fluids
, vol.19
, pp. 113303
-
-
Wilkinson, M.1
Mehlig, B.2
Östlund, S.3
Duncan, K.P.4
-
21
-
-
43449113861
-
-
10.1103/PhysRevE.77.055301
-
J. C. Zahnow, R. D. Vilela, U. Feudel, and T. Tél, Phys. Rev. E 77, 055301 (R) (2008). 10.1103/PhysRevE.77.055301
-
(2008)
Phys. Rev. e
, vol.77
, pp. 055301
-
-
Zahnow, J.C.1
Vilela, R.D.2
Feudel, U.3
Tél, T.4
-
22
-
-
56749154793
-
-
10.1103/PhysRevE.78.056206
-
Rene O. Medrano-T., A. Moura, T. Tél, I. L. Caldas, and C. Grebogi, Phys. Rev. E 78, 056206 (2008). 10.1103/PhysRevE.78.056206
-
(2008)
Phys. Rev. e
, vol.78
, pp. 056206
-
-
Medrano-T, R.O.1
Moura, A.2
Tél, T.3
Caldas, I.L.4
Grebogi, C.5
-
23
-
-
69549121475
-
-
In Ref. coagulation was referred to as aggregation. However, in the context of liquid particles coagulation is the more widely used term.
-
In Ref. coagulation was referred to as aggregation. However, in the context of liquid particles coagulation is the more widely used term.
-
-
-
-
25
-
-
0025525517
-
-
A. L. Alldredge, T. Granata, C. Gotschalk, and T. Dickey, Limnol. Oceanogr. 35, 1415 (1990).
-
(1990)
Limnol. Oceanogr.
, vol.35
, pp. 1415
-
-
Alldredge, A.L.1
Granata, T.2
Gotschalk, C.3
Dickey, T.4
-
26
-
-
33846813716
-
-
10.1146/annurev.fluid.39.050905.110214
-
E. Villermaux, Annu. Rev. Fluid. Mech. 39, 419 (2007). 10.1146/annurev.fluid.39.050905.110214
-
(2007)
Annu. Rev. Fluid. Mech.
, vol.39
, pp. 419
-
-
Villermaux, E.1
-
29
-
-
0344468067
-
-
10.1063/1.1612500.
-
J. Bec, Phys. Fluids 15, L81 (2003) 10.1063/1.1612500.
-
(2003)
Phys. Fluids
, vol.15
, pp. 81
-
-
Bec, J.1
-
36
-
-
69549112592
-
-
For the cases studied here, typical distances between particles are 50 a1.
-
For the cases studied here, typical distances between particles are 50 a1.
-
-
-
-
38
-
-
0343530702
-
-
10.1063/1.861201
-
M. Delichatsios, Phys. Fluids 18, 622 (1975). 10.1063/1.861201
-
(1975)
Phys. Fluids
, vol.18
, pp. 622
-
-
Delichatsios, M.1
-
40
-
-
40549097784
-
-
10.1103/PhysRevE.77.026215
-
J. C. Zahnow and U. Feudel, Phys. Rev. E 77, 026215 (2008). 10.1103/PhysRevE.77.026215
-
(2008)
Phys. Rev. e
, vol.77
, pp. 026215
-
-
Zahnow, J.C.1
Feudel, U.2
-
41
-
-
0000428240
-
-
10.1063/1.866206
-
M. R. Maxey, Phys. Fluids 30, 1915 (1987). 10.1063/1.866206
-
(1987)
Phys. Fluids
, vol.30
, pp. 1915
-
-
Maxey, M.R.1
-
42
-
-
37649031879
-
-
10.1103/PhysRevE.65.026216
-
T. Nishikawa, Z. Toroczkai, C. Grebogi, and T. Tél, Phys. Rev. E 65, 026216 (2002). 10.1103/PhysRevE.65.026216
-
(2002)
Phys. Rev. e
, vol.65
, pp. 026216
-
-
Nishikawa, T.1
Toroczkai, Z.2
Grebogi, C.3
Tél, T.4
-
43
-
-
0028442367
-
-
10.1016/0960-0779(94)90129-5
-
M. Liu, F. Muzzio, and R. Peskin, Chaos, Solitons Fractals 4, 869 (1994). 10.1016/0960-0779(94)90129-5
-
(1994)
Chaos, Solitons Fractals
, vol.4
, pp. 869
-
-
Liu, M.1
Muzzio, F.2
Peskin, R.3
-
45
-
-
34547336612
-
-
10.1103/PhysRevE.75.065203
-
R. D. Vilela, T. Tél, A. P. S. de Moura, and C. Grebogi, Phys. Rev. E 75, 065203 (R) (2007). 10.1103/PhysRevE.75.065203
-
(2007)
Phys. Rev. e
, vol.75
, pp. 065203
-
-
Vilela, R.D.1
Tél, T.2
De Moura, A.P.S.3
Grebogi, C.4
-
47
-
-
33645083462
-
-
M. Lunau, A. Lemke, O. Dellwig, and M. Simon, Limnol. Oceanogr. 51, 847 (2006).
-
(2006)
Limnol. Oceanogr.
, vol.51
, pp. 847
-
-
Lunau, M.1
Lemke, A.2
Dellwig, O.3
Simon, M.4
-
48
-
-
69549104550
-
-
A change in the fragmentation rule has, however, important consequences. By replacing the rule of uniform distribution for the possible size classes after fragmentation by the rule that coagulates always split into two halves of similar sizes makes the size distribution exponential, practically over all size classes.
-
A change in the fragmentation rule has, however, important consequences. By replacing the rule of uniform distribution for the possible size classes after fragmentation by the rule that coagulates always split into two halves of similar sizes makes the size distribution exponential, practically over all size classes.
-
-
-
|