메뉴 건너뛰기




Volumn 70, Issue 3 2, 2004, Pages

Stability of attractors formed by inertial particles in open chaotic flows

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; BIFURCATION (MATHEMATICS); BUOYANCY; CHAOS THEORY; COMPUTATIONAL METHODS; GAUSSIAN NOISE (ELECTRONIC); HAMILTONIANS; INCOMPRESSIBLE FLOW; LAGRANGE MULTIPLIERS; MATHEMATICAL MODELS; PERTURBATION TECHNIQUES; PROBABILITY; RANDOM PROCESSES; VORTEX FLOW;

EID: 37649031850     PISSN: 15393755     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.70.036203     Document Type: Article
Times cited : (8)

References (38)
  • 8
    • 4244020054 scopus 로고    scopus 로고
    • T. Nishikawa, Z. Toroczkai, and C. Grebogi, Phys. Rev. Lett. 87, 038301 (2001); T. Nishikawa, Z. Toroczkai, C. Grebogi, and T. Tél, Phys. Rev. E 65, 026216 (2002); Z. Liu, Y.-C. Lai, and J. M. Lopez, Chaos 12, 417 (2002); T. Tél, T. Nishikawa, A. E. Motter, C. Grebogi, and Z. Toroczkai, ibid. 14, 72 (2004).
    • (2001) Phys. Rev. Lett. , vol.87 , pp. 038301
    • Nishikawa, T.1    Toroczkai, Z.2    Grebogi, C.3
  • 9
    • 37649031879 scopus 로고    scopus 로고
    • T. Nishikawa, Z. Toroczkai, and C. Grebogi, Phys. Rev. Lett. 87, 038301 (2001); T. Nishikawa, Z. Toroczkai, C. Grebogi, and T. Tél, Phys. Rev. E 65, 026216 (2002); Z. Liu, Y.-C. Lai, and J. M. Lopez, Chaos 12, 417 (2002); T. Tél, T. Nishikawa, A. E. Motter, C. Grebogi, and Z. Toroczkai, ibid. 14, 72 (2004).
    • (2002) Phys. Rev. E , vol.65 , pp. 026216
    • Nishikawa, T.1    Toroczkai, Z.2    Grebogi, C.3    Tél, T.4
  • 10
    • 0036592409 scopus 로고    scopus 로고
    • T. Nishikawa, Z. Toroczkai, and C. Grebogi, Phys. Rev. Lett. 87, 038301 (2001); T. Nishikawa, Z. Toroczkai, C. Grebogi, and T. Tél, Phys. Rev. E 65, 026216 (2002); Z. Liu, Y.-C. Lai, and J. M. Lopez, Chaos 12, 417 (2002); T. Tél, T. Nishikawa, A. E. Motter, C. Grebogi, and Z. Toroczkai, ibid. 14, 72 (2004).
    • (2002) Chaos , vol.12 , pp. 417
    • Liu, Z.1    Lai, Y.-C.2    Lopez, J.M.3
  • 11
    • 9744235339 scopus 로고    scopus 로고
    • T. Nishikawa, Z. Toroczkai, and C. Grebogi, Phys. Rev. Lett. 87, 038301 (2001); T. Nishikawa, Z. Toroczkai, C. Grebogi, and T. Tél, Phys. Rev. E 65, 026216 (2002); Z. Liu, Y.-C. Lai, and J. M. Lopez, Chaos 12, 417 (2002); T. Tél, T. Nishikawa, A. E. Motter, C. Grebogi, and Z. Toroczkai, ibid. 14, 72 (2004).
    • (2004) Chaos , vol.14 , pp. 72
    • Tél, T.1    Nishikawa, T.2    Motter, A.E.3    Grebogi, C.4    Toroczkai, Z.5
  • 14
    • 33645086343 scopus 로고    scopus 로고
    • note
    • 2).
  • 15
    • 33645091590 scopus 로고    scopus 로고
    • Ph.D. dissertation, Arizona State University
    • c, is numerically inaccessible.
    • (2004)
    • Do, Y.1
  • 17
    • 84919468464 scopus 로고
    • C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 50, 935 (1983); Ergod. Theory Dyn. Syst. 5, 341 (1985).
    • (1985) Ergod. Theory Dyn. Syst. , vol.5 , pp. 341
  • 21
    • 33847573999 scopus 로고
    • J. C. Alexander, J. A. Yorke, Z. You, and I. Kan, Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 795 (1992); E. Ott, J. C. Alexander, I. Kan, J. C. Sommerer, and J. A. Yorke, Physica D 76, 384 (1994); Y.-C. Lai and C. Grebogi, Phys. Rev. E 52, R3313 (1995).
    • (1994) Physica D , vol.76 , pp. 384
    • Ott, E.1    Alexander, J.C.2    Kan, I.3    Sommerer, J.C.4    Yorke, J.A.5
  • 22
    • 0001475002 scopus 로고
    • J. C. Alexander, J. A. Yorke, Z. You, and I. Kan, Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 795 (1992); E. Ott, J. C. Alexander, I. Kan, J. C. Sommerer, and J. A. Yorke, Physica D 76, 384 (1994); Y.-C. Lai and C. Grebogi, Phys. Rev. E 52, R3313 (1995).
    • (1995) Phys. Rev. E , vol.52
    • Lai, Y.-C.1    Grebogi, C.2
  • 24
    • 0035971676 scopus 로고    scopus 로고
    • V. Andrade, R. Davidchack, and Y.-C. Lai, Phys. Rev. E 61, 3230 (2000); L. Zhu, A. Raghu, and Y.-C. Lai, Phys. Rev. Lett. 86, 4017 (2001).
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 4017
    • Zhu, L.1    Raghu, A.2    Lai, Y.-C.3
  • 28
    • 33645065837 scopus 로고    scopus 로고
    • note
    • Note that Fig. 4(a) represents a plot of initial conditions. For both ideal and inertial particles, those with long lifetime belong to the stable foliation of the nonattracting chaotic set. It is known that, for a general Hamiltonian system, under weak dissipation, the stable foliations are converted into the basin boundaries between the coexisting attractors [30], which are fractals.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.