-
1
-
-
0030910349
-
GroEL-mediated protein folding
-
Fenton W.A., and Horwich A.L. GroEL-mediated protein folding. Protein Sci. 6 (1997) 743-760
-
(1997)
Protein Sci.
, vol.6
, pp. 743-760
-
-
Fenton, W.A.1
Horwich, A.L.2
-
2
-
-
0037040541
-
Molecular chaperones in the cytosol: from nascent chain to folded protein
-
Hartl F.U., and Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295 (2002) 1852-1858
-
(2002)
Science
, vol.295
, pp. 1852-1858
-
-
Hartl, F.U.1
Hayer-Hartl, M.2
-
3
-
-
0030045870
-
Protein folding in the central cavity of the GroEL-GroES chaperonin complex
-
Mayhew M., da Silva A.C., Martin J., Erdjument-Bromage H., Tempst P., and Hartl F.U. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379 (1996) 420-426
-
(1996)
Nature
, vol.379
, pp. 420-426
-
-
Mayhew, M.1
da Silva, A.C.2
Martin, J.3
Erdjument-Bromage, H.4
Tempst, P.5
Hartl, F.U.6
-
4
-
-
0030056969
-
Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction
-
Weissman J.S., Rye H.S., Fenton W.A., Beechem J.M., and Horwich A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84 (1996) 481-490
-
(1996)
Cell
, vol.84
, pp. 481-490
-
-
Weissman, J.S.1
Rye, H.S.2
Fenton, W.A.3
Beechem, J.M.4
Horwich, A.L.5
-
5
-
-
0027943510
-
The crystal structure of the bacterial chaperonin GroEL at 2.8 Å
-
Braig K., Otwinowski Z., Hegde R., Boisvert D.C., Joachimiak A., Horwich A.L., and Sigler P.B. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371 (1994) 578-586
-
(1994)
Nature
, vol.371
, pp. 578-586
-
-
Braig, K.1
Otwinowski, Z.2
Hegde, R.3
Boisvert, D.C.4
Joachimiak, A.5
Horwich, A.L.6
Sigler, P.B.7
-
6
-
-
0026584271
-
Protein folding in the cell
-
Gething M.J., and Sambrook J. Protein folding in the cell. Nature 355 (1992) 33-45
-
(1992)
Nature
, vol.355
, pp. 33-45
-
-
Gething, M.J.1
Sambrook, J.2
-
7
-
-
0029992278
-
Molecular chaperones in cellular protein folding
-
Hartl F.U. Molecular chaperones in cellular protein folding. Nature 381 (1996) 571-579
-
(1996)
Nature
, vol.381
, pp. 571-579
-
-
Hartl, F.U.1
-
8
-
-
43749113194
-
Hydrophilic residues 526 KNDAAD 531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity
-
Machida K., Kono-Okada A., Hongo K., Mizobata T., and Kawata Y. Hydrophilic residues 526 KNDAAD 531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity. J. Biol. Chem. 283 (2008) 6886-6896
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 6886-6896
-
-
Machida, K.1
Kono-Okada, A.2
Hongo, K.3
Mizobata, T.4
Kawata, Y.5
-
9
-
-
0037926429
-
Folding with and without encapsulation by cis- and trans-only GroEL-GroES complexes
-
Farr G.W., Fenton W.A., Chaudhuri T.K., Clare D.K., Saibil H.R., and Horwich A.L. Folding with and without encapsulation by cis- and trans-only GroEL-GroES complexes. EMBO J. 22 (2003) 3220-3230
-
(2003)
EMBO J.
, vol.22
, pp. 3220-3230
-
-
Farr, G.W.1
Fenton, W.A.2
Chaudhuri, T.K.3
Clare, D.K.4
Saibil, H.R.5
Horwich, A.L.6
-
10
-
-
0030067634
-
The crystal structure of the GroES co-chaperonin at 2.8 Å resolution
-
Hunt J.F., Weaver A.J., Landry S.J., Gierasch L., and Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature 379 (1996) 37-45
-
(1996)
Nature
, vol.379
, pp. 37-45
-
-
Hunt, J.F.1
Weaver, A.J.2
Landry, S.J.3
Gierasch, L.4
Deisenhofer, J.5
-
11
-
-
0030870719
-
The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
-
Xu Z., Horwich A.L., and Sigler P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388 (1997) 741-750
-
(1997)
Nature
, vol.388
, pp. 741-750
-
-
Xu, Z.1
Horwich, A.L.2
Sigler, P.B.3
-
12
-
-
0033619703
-
Functional communications between the apical and equatorial domains of GroEL through the intermediate domain
-
Kawata Y., Kawagoe M., Hongo K., Miyazaki T., Higurashi T., Mizobata T., and Nagai J. Functional communications between the apical and equatorial domains of GroEL through the intermediate domain. Biochemistry 38 (1999) 15731-15740
-
(1999)
Biochemistry
, vol.38
, pp. 15731-15740
-
-
Kawata, Y.1
Kawagoe, M.2
Hongo, K.3
Miyazaki, T.4
Higurashi, T.5
Mizobata, T.6
Nagai, J.7
-
13
-
-
1942469376
-
Stopped-flow fluorescence analysis of the conformational changes in the GroEL apical domain: relationships between movements in the apical domain and the quaternary structure of GroEL
-
Taniguchi M., Yoshimi T., Hongo K., Mizobata T., and Kawata Y. Stopped-flow fluorescence analysis of the conformational changes in the GroEL apical domain: relationships between movements in the apical domain and the quaternary structure of GroEL. J. Biol. Chem. 279 (2004) 16368-16376
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 16368-16376
-
-
Taniguchi, M.1
Yoshimi, T.2
Hongo, K.3
Mizobata, T.4
Kawata, Y.5
-
14
-
-
33646340972
-
Multiple structural transitions of the GroEL subunit are sensitive to intermolecular interactions with cochaperonin and refolding polypeptide
-
Yoshimi T., Hongo K., Mizobata T., and Kawata Y. Multiple structural transitions of the GroEL subunit are sensitive to intermolecular interactions with cochaperonin and refolding polypeptide. J. Biochem. (Tokyo) 139 (2006) 407-419
-
(2006)
J. Biochem. (Tokyo)
, vol.139
, pp. 407-419
-
-
Yoshimi, T.1
Hongo, K.2
Mizobata, T.3
Kawata, Y.4
-
15
-
-
0037184934
-
GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle
-
Miyazaki T., Yoshimi T., Furutsu Y., Hongo K., Mizobata T., Kanemori M., and Kawata Y. GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle. J. Biol. Chem. 277 (2002) 50621-50628
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 50621-50628
-
-
Miyazaki, T.1
Yoshimi, T.2
Furutsu, Y.3
Hongo, K.4
Mizobata, T.5
Kanemori, M.6
Kawata, Y.7
-
16
-
-
0034682774
-
Refolding of target proteins from a "rigid" mutant chaperonin demonstrates a minimal mechanism of chaperonin binding and release
-
Mizobata T., Kawagoe M., Hongo K., Nagai J., and Kawata Y. Refolding of target proteins from a "rigid" mutant chaperonin demonstrates a minimal mechanism of chaperonin binding and release. J. Biol. Chem. 275 (2000) 25600-25607
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25600-25607
-
-
Mizobata, T.1
Kawagoe, M.2
Hongo, K.3
Nagai, J.4
Kawata, Y.5
-
18
-
-
0026416043
-
Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate
-
Martin J., Langer T., Boteva R., Schramel A., Horwich A.L., and Hartl F.U. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352 (1991) 36-42
-
(1991)
Nature
, vol.352
, pp. 36-42
-
-
Martin, J.1
Langer, T.2
Boteva, R.3
Schramel, A.4
Horwich, A.L.5
Hartl, F.U.6
-
19
-
-
0034570492
-
Assay of malate dehydrogenase. A substrate for the E. coli chaperonins GroEL and GroES
-
Hayer-Hartl M. Assay of malate dehydrogenase. A substrate for the E. coli chaperonins GroEL and GroES. Methods Mol. Biol. 140 (2000) 127-132
-
(2000)
Methods Mol. Biol.
, vol.140
, pp. 127-132
-
-
Hayer-Hartl, M.1
-
20
-
-
0027182927
-
Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES
-
Kubo T., Mizobata T., and Kawata Y. Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES. J. Biol. Chem. 268 (1993) 19346-19351
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 19346-19351
-
-
Kubo, T.1
Mizobata, T.2
Kawata, Y.3
-
21
-
-
41349108000
-
Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum
-
Hirai H., Noi K., Hongo K., Mizobata T., and Kawata Y. Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum. J. Biochem. 143 (2008) 505-515
-
(2008)
J. Biochem.
, vol.143
, pp. 505-515
-
-
Hirai, H.1
Noi, K.2
Hongo, K.3
Mizobata, T.4
Kawata, Y.5
-
22
-
-
33947098544
-
Structural stability of covalently linked GroES heptamer: advantages in the formation of oligomeric structure
-
Sakane I., Hongo K., Motojima F., Murayama S., Mizobata T., and Kawata Y. Structural stability of covalently linked GroES heptamer: advantages in the formation of oligomeric structure. J. Mol. Biol. 367 (2007) 1171-1185
-
(2007)
J. Mol. Biol.
, vol.367
, pp. 1171-1185
-
-
Sakane, I.1
Hongo, K.2
Motojima, F.3
Murayama, S.4
Mizobata, T.5
Kawata, Y.6
-
23
-
-
0027250447
-
Hydrolysis of adenosine 5′-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion
-
Todd M.J., Viitanen P.V., and Lorimer G.H. Hydrolysis of adenosine 5′-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry 32 (1993) 8560-8567
-
(1993)
Biochemistry
, vol.32
, pp. 8560-8567
-
-
Todd, M.J.1
Viitanen, P.V.2
Lorimer, G.H.3
-
24
-
-
0027447796
-
Escherichia coli chaperonins cpn60 (groEL) and cpn10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase
-
Miller A.D., Maghlaoui K., Albanese G., Kleinjan D.A., and Smith C. Escherichia coli chaperonins cpn60 (groEL) and cpn10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase. Biochem. J. 291 Pt 1 (1993) 139-144
-
(1993)
Biochem. J.
, vol.291
, Issue.PART 1
, pp. 139-144
-
-
Miller, A.D.1
Maghlaoui, K.2
Albanese, G.3
Kleinjan, D.A.4
Smith, C.5
-
25
-
-
0030804446
-
Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL
-
Rye H.S., Burston S.G., Fenton W.A., Beechem J.M., Xu Z., Sigler P.B., and Horwich A.L. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388 (1997) 792-798
-
(1997)
Nature
, vol.388
, pp. 792-798
-
-
Rye, H.S.1
Burston, S.G.2
Fenton, W.A.3
Beechem, J.M.4
Xu, Z.5
Sigler, P.B.6
Horwich, A.L.7
-
26
-
-
0033617129
-
GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
-
Rye H.S., Roseman A.M., Chen S., Furtak K., Fenton W.A., Saibil H.R., and Horwich A.L. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97 (1999) 325-338
-
(1999)
Cell
, vol.97
, pp. 325-338
-
-
Rye, H.S.1
Roseman, A.M.2
Chen, S.3
Furtak, K.4
Fenton, W.A.5
Saibil, H.R.6
Horwich, A.L.7
-
27
-
-
0035913910
-
GroEL/GroES-mediated folding of a protein too large to be encapsulated
-
Chaudhuri T.K., Farr G.W., Fenton W.A., Rospert S., and Horwich A.L. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107 (2001) 235-246
-
(2001)
Cell
, vol.107
, pp. 235-246
-
-
Chaudhuri, T.K.1
Farr, G.W.2
Fenton, W.A.3
Rospert, S.4
Horwich, A.L.5
-
28
-
-
33646907087
-
GroEL-GroES-mediated protein folding
-
Horwich A.L., Farr G.W., and Fenton W.A. GroEL-GroES-mediated protein folding. Chem. Rev. 106 (2006) 1917-1930
-
(2006)
Chem. Rev.
, vol.106
, pp. 1917-1930
-
-
Horwich, A.L.1
Farr, G.W.2
Fenton, W.A.3
-
29
-
-
0034876666
-
Single-molecule observation of protein-protein interactions in the chaperonin system
-
Taguchi H., Ueno T., Tadakuma H., Yoshida M., and Funatsu T. Single-molecule observation of protein-protein interactions in the chaperonin system. Nat. Biotechnol. 19 (2001) 861-865
-
(2001)
Nat. Biotechnol.
, vol.19
, pp. 861-865
-
-
Taguchi, H.1
Ueno, T.2
Tadakuma, H.3
Yoshida, M.4
Funatsu, T.5
-
30
-
-
33644868758
-
Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL
-
Koike-Takeshita A., Shimamura T., Yokoyama K., Yoshida M., and Taguchi H. Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL. J. Biol. Chem. 281 (2006) 962-967
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 962-967
-
-
Koike-Takeshita, A.1
Shimamura, T.2
Yokoyama, K.3
Yoshida, M.4
Taguchi, H.5
-
31
-
-
57649114084
-
Triggering protein folding within the GroEL-GroES complex
-
Madan D., Lin Z., and Rye H.S. Triggering protein folding within the GroEL-GroES complex. J. Biol. Chem. (2008)
-
(2008)
J. Biol. Chem.
-
-
Madan, D.1
Lin, Z.2
Rye, H.S.3
-
32
-
-
0035966323
-
ATP-bound states of GroEL captured by cryo-electron microscopy
-
Ranson N.A., Farr G.W., Roseman A.M., Gowen B., Fenton W.A., Horwich A.L., and Saibil H.R. ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107 (2001) 869-879
-
(2001)
Cell
, vol.107
, pp. 869-879
-
-
Ranson, N.A.1
Farr, G.W.2
Roseman, A.M.3
Gowen, B.4
Fenton, W.A.5
Horwich, A.L.6
Saibil, H.R.7
-
33
-
-
0034665864
-
A dynamic model for the allosteric mechanism of GroEL
-
Ma J., Sigler P.B., Xu Z., and Karplus M. A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302 (2000) 303-313
-
(2000)
J. Mol. Biol.
, vol.302
, pp. 303-313
-
-
Ma, J.1
Sigler, P.B.2
Xu, Z.3
Karplus, M.4
-
34
-
-
0008819754
-
The GROMOS biomolecular simulation program package
-
Scott W.R.P., Hunenberger P.H., Tironi I.G., Mark A.E., Billeter S.R., Fennen J., Torda A.E., Huber T., Kruger P., and van Gunsteren W.F. The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103 (1999) 3596-3607
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 3596-3607
-
-
Scott, W.R.P.1
Hunenberger, P.H.2
Tironi, I.G.3
Mark, A.E.4
Billeter, S.R.5
Fennen, J.6
Torda, A.E.7
Huber, T.8
Kruger, P.9
van Gunsteren, W.F.10
-
35
-
-
0030592538
-
The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL
-
Roseman A.M., Chen S., White H., Braig K., and Saibil H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87 (1996) 241-251
-
(1996)
Cell
, vol.87
, pp. 241-251
-
-
Roseman, A.M.1
Chen, S.2
White, H.3
Braig, K.4
Saibil, H.R.5
-
36
-
-
32244441663
-
Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes
-
Ranson N.A., Clare D.K., Farr G.W., Houldershaw D., Horwich A.L., and Saibil H.R. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat. Struct. Mol. Biol. 13 (2006) 147-152
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 147-152
-
-
Ranson, N.A.1
Clare, D.K.2
Farr, G.W.3
Houldershaw, D.4
Horwich, A.L.5
Saibil, H.R.6
-
37
-
-
53049090990
-
Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle
-
Sameshima T., Ueno T., Iizuka R., Ishii N., Terada N., Okabe K., and Funatsu T. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. J. Biol. Chem. 283 (2008) 23765-23773
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23765-23773
-
-
Sameshima, T.1
Ueno, T.2
Iizuka, R.3
Ishii, N.4
Terada, N.5
Okabe, K.6
Funatsu, T.7
-
38
-
-
53049103895
-
Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant
-
Koike-Takeshita A., Yoshida M., and Taguchi H. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J. Biol. Chem. 283 (2008) 23774-23781
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23774-23781
-
-
Koike-Takeshita, A.1
Yoshida, M.2
Taguchi, H.3
-
40
-
-
0036809967
-
Structure and function of the GroE chaperone
-
Walter S. Structure and function of the GroE chaperone. Cell. Mol. Life Sci. 59 (2002) 1589-1597
-
(2002)
Cell. Mol. Life Sci.
, vol.59
, pp. 1589-1597
-
-
Walter, S.1
-
41
-
-
0029881007
-
-
R. Koradi, M. Billeter, K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures, J. Mol. Graph. 14 (1996) 51-55, 29-32.
-
R. Koradi, M. Billeter, K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures, J. Mol. Graph. 14 (1996) 51-55, 29-32.
-
-
-
|