-
2
-
-
24944448580
-
A Bayes optimal approach for partitioning the values of categorical attributes
-
M. Boullé;;. A Bayes optimal approach for partitioning the values of categorical attributes. Journal of Machine Learning Research, 6:1431-1452, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1431-1452
-
-
Boullé, M.1
-
3
-
-
33749007698
-
MODL: A Bayes optimal discretization method for continuous attributes
-
M. Boullé;;. MODL: a Bayes optimal discretization method for continuous attributes. Machine Learning, 65(1):131-165, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 131-165
-
-
Boullé, M.1
-
4
-
-
34547688866
-
Compression-based averaging of selective naive Bayes classifiers
-
M. Boullé;;. Compression-based averaging of selective naive Bayes classifiers. Journal of Machine Learning Research, 8:1659-1685, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1659-1685
-
-
Boullé, M.1
-
5
-
-
68949134163
-
An efficient parameter-free method for large scale offline learning
-
M. Boullé;;. An efficient parameter-free method for large scale offline learning. In ICML 2008 Workshop for PASCAL Large Scale Learning Challenge, 2008. http://largescale.first.fraunhofer.de/workshop/.
-
(2008)
ICML 2008 Workshop for PASCAL Large Scale Learning Challenge
-
-
Boullé, M.1
-
6
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
34247849152
-
Training a support vector machine in the primal
-
O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19:1155-1178, 2007.
-
(2007)
Neural Computation
, vol.19
, pp. 1155-1178
-
-
Chapelle, O.1
-
8
-
-
0004042547
-
-
P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth. CRISP-DM 1.0 : Step-by-step Data Mining Guide, 2000.
-
(2000)
CRISP-DM 1.0 : Step-by-step Data Mining Guide
-
-
Chapman, P.1
Clinton, J.2
Kerber, R.3
Khabaza, T.4
Reinartz, T.5
Shearer, C.6
Wirth, R.7
-
9
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
Morgan Kaufmann, San Francisco, CA
-
J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. In Proceedings of the 12th International Conference on Machine Learning, pages 194-202. Morgan Kaufmann, San Francisco, CA, 1995.
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
10
-
-
0345438685
-
ROC graphs: Notes and practical considerations for researchers
-
Technical Report HPL-2003-4, HP Laboratories
-
T. Fawcett. ROC graphs: Notes and practical considerations for researchers. Technical Report HPL-2003-4, HP Laboratories, 2003.
-
(2003)
-
-
Fawcett, T.1
-
11
-
-
85130734369
-
Knowledge discovery and data mining: Towards a unifying framework
-
U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data mining: towards a unifying framework. In KDD, pages 82-88, 1996.
-
(1996)
KDD
, pp. 82-88
-
-
Fayyad, U.M.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
12
-
-
0035528674
-
Idiot bayes ? not so stupid after all?
-
D.J. Hand and K. Yu. Idiot bayes ? not so stupid after all? International Statistical Review, 69(3): 385-399, 2001.
-
(2001)
International Statistical Review
, vol.69
, Issue.3
, pp. 385-399
-
-
Hand, D.J.1
Yu, K.2
-
13
-
-
0001259111
-
Bayesian model averaging: A tutorial
-
J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky. Bayesian model averaging: A tutorial. Statistical Science, 14(4):382-417, 1999.
-
(1999)
Statistical Science
, vol.14
, Issue.4
, pp. 382-417
-
-
Hoeting, J.A.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.T.4
-
14
-
-
56449086680
-
A dual coordinate descent method for large-scale linear svm
-
New York, NY, USA, ACM
-
C-J. Hsieh, K-W. Chang, C-J. Lin, S. Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear svm. In ICML 08: Proceedings of the 25th international conference on Machine learning, pages 408-415, New York, NY, USA, 2008. ACM.
-
(2008)
ICML 08: Proceedings of the 25th international conference on Machine learning
, pp. 408-415
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.4
Sundararajan, S.5
-
15
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
Berlin, Springer
-
T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In European Conference on Machine Learning (ECML), pages 137-142, Berlin, 1998. Springer.
-
(1998)
European Conference on Machine Learning (ECML)
, pp. 137-142
-
-
Joachims, T.1
-
16
-
-
0031381525
-
Wrappers for feature selection
-
R. Kohavi and G. John. Wrappers for feature selection. Artificial Intelligence, 97(1-2):273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
19
-
-
0141688369
-
Discretization: An enabling technique
-
H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enabling technique. Data Mining and Knowledge Discovery, 4(6):393-423, 2002.
-
(2002)
Data Mining and Knowledge Discovery
, vol.4
, Issue.6
, pp. 393-423
-
-
Liu, H.1
Hussain, F.2
Tan, C.L.3
Dash, M.4
-
21
-
-
0003766191
-
-
Morgan Kaufmann Publishers, Inc. San Francisco, USA
-
D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers, Inc. San Francisco, USA, 1999.
-
(1999)
Data Preparation for Data Mining
-
-
Pyle, D.1
|