-
1
-
-
0003693460
-
-
2nd ed, Juriasti, E, Soloshonok, V. A, Eds, John Wiley & Sons: Hoboken, NJ
-
Enantioselective Synthesis of β-Amino Acids, 2nd ed.; Juriasti, E., Soloshonok, V. A., Eds.; John Wiley & Sons: Hoboken, NJ, 2005.
-
(2005)
Enantioselective Synthesis of β-Amino Acids
-
-
-
2
-
-
33846550172
-
-
and references cited therein
-
(a) Yang, J. W.; Stadler, M.; List, B. Angew. Chem., Int. Ed. 2007, 46, 609. and references cited therein.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 609
-
-
Yang, J.W.1
Stadler, M.2
List, B.3
-
3
-
-
37349005457
-
-
For a review of organocatalytic approaches, see
-
(b) For a review of organocatalytic approaches, see: Ting, A.; Schaus, S. E. Eur. J. Org. Chem. 2007, 5797.
-
(2007)
Eur. J. Org. Chem
, pp. 5797
-
-
Ting, A.1
Schaus, S.E.2
-
4
-
-
57849112535
-
-
Andersson, P. G, Munslow, I. J, Eds, Wiley-VCH: Weinheim, Germany
-
Genet, J.-P. In Modern Reduction Methods; Andersson, P. G., Munslow, I. J., Eds.; Wiley-VCH: Weinheim, Germany, 2008; p 3.
-
(2008)
Modern Reduction Methods
, pp. 3
-
-
Genet, J.-P.1
-
5
-
-
0141732263
-
-
(a) Sibi, M. P.; Prabagaran, N.; Ghorpade, S. G.; Jasperse, C. P. J. Am. Chem. Soc. 2003, 125, 11796.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 11796
-
-
Sibi, M.P.1
Prabagaran, N.2
Ghorpade, S.G.3
Jasperse, C.P.4
-
6
-
-
33746326181
-
-
(b) Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 9328.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 9328
-
-
Chen, Y.K.1
Yoshida, M.2
MacMillan, D.W.C.3
-
8
-
-
0037067063
-
-
(b) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Leckta, T. J. Am. Chem. Soc. 2002, 124, 6626.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 6626
-
-
Taggi, A.E.1
Hafez, A.M.2
Wack, H.3
Young, B.4
Ferraris, D.5
Leckta, T.6
-
9
-
-
24044436551
-
-
(c) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11586.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 11586
-
-
Lee, E.C.1
Hodous, B.L.2
Bergin, E.3
Shih, C.4
Fu, G.C.5
-
10
-
-
34247565955
-
-
(a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582.
-
(2007)
Science
, vol.316
, pp. 582
-
-
Beeson, T.D.1
Mastracchio, A.2
Hong, J.B.3
Ashton, K.4
MacMillan, D.W.C.5
-
11
-
-
34250205588
-
-
(b) Jang, H.; Hong, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 7004
-
-
Jang, H.1
Hong, J.B.2
MacMillan, D.W.C.3
-
13
-
-
57549095938
-
-
(d) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 16494.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 16494
-
-
Graham, T.H.1
Jones, C.M.2
Jui, N.T.3
MacMillan, D.W.C.4
-
14
-
-
0003046558
-
-
For nonenantioselective couplings of nitronates with π nucleophiles, see: a
-
For nonenantioselective couplings of nitronates with π nucleophiles, see: (a) Arai, N.; Narasaka, K. Chem. Lett. 1995, 24, 987.
-
(1995)
Chem. Lett
, vol.24
, pp. 987
-
-
Arai, N.1
Narasaka, K.2
-
16
-
-
0037725799
-
-
Notably, silyl nitronates can be employed in enantioselective Henry reactions with aldehydes under nonoxidative conditions. See: a
-
Notably, silyl nitronates can be employed in enantioselective Henry reactions with aldehydes under nonoxidative conditions. See: (a) Risgaard, T.; Gothelf, K. V.; Jørgensen, K. A. Org. Biomol. Chem. 2003, 1, 153.
-
(2003)
Org. Biomol. Chem
, vol.1
, pp. 153
-
-
Risgaard, T.1
Gothelf, K.V.2
Jørgensen, K.A.3
-
17
-
-
0037466989
-
-
(b) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 2054.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 2054
-
-
Ooi, T.1
Doda, K.2
Maruoka, K.3
-
18
-
-
34250620600
-
-
For a review, see
-
(c) For a review, see: Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007, 2561.
-
(2007)
Eur. J. Org. Chem
, pp. 2561
-
-
Palomo, C.1
Oiarbide, M.2
Laso, A.3
-
19
-
-
68849130669
-
-
We measured the oxidation potentials of the standard silyl nitronates used in our studies and found them to be slightly lower than the values reported for enamines see ref 9b, for tert-butyldimethylsilyl propylideneazinate, E°, 0.45 V vs SCE; for triisopropylsilyl propylideneazinate, E°, 0.47 V vs SCE. However, because these potentials are thermodynamic in nature and there is a strong overpotential when CAN is employed, it is impossible to predict a priori whether the enamine or the silyl nitronate will be kinetically more prone to oxidation by CAN using these values
-
(a) We measured the oxidation potentials of the standard silyl nitronates used in our studies and found them to be slightly lower than the values reported for enamines (see ref 9b): for tert-butyldimethylsilyl propylideneazinate, E° = 0.45 V vs SCE; for triisopropylsilyl propylideneazinate, E° = 0.47 V vs SCE. However, because these potentials are thermodynamic in nature and there is a strong overpotential when CAN is employed, it is impossible to predict a priori whether the enamine or the silyl nitronate will be kinetically more prone to oxidation by CAN using these values.
-
-
-
-
20
-
-
37049088376
-
-
(b) Schoeller, W. W.; Niemann, J.; Rademacher, P. J. Chem. Soc., Perkin Trans. 2 1988, 369.
-
(1988)
J. Chem. Soc., Perkin Trans. 2
, pp. 369
-
-
Schoeller, W.W.1
Niemann, J.2
Rademacher, P.3
-
21
-
-
68849118746
-
-
Performed at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d) level see ref 6a
-
Performed at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d) level (see ref 6a).
-
-
-
-
22
-
-
68849093918
-
-
Relative stabilities of silyl ethers toward base hydrolysis: TMS (1) < TES (10-100) < TBDMS ≈ TBDPS (20 000) < TIPS (100 000). These values were taken from: Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons: New York, 1999.
-
Relative stabilities of silyl ethers toward base hydrolysis: TMS (1) < TES (10-100) < TBDMS ≈ TBDPS (20 000) < TIPS (100 000). These values were taken from: Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons: New York, 1999.
-
-
-
-
23
-
-
68849116282
-
-
3 as the base generally increases the amount of syn β-nitroaldehyde produced.
-
3 as the base generally increases the amount of syn β-nitroaldehyde produced.
-
-
-
-
24
-
-
68849119549
-
-
6 after 3 h, while TIPS nitronate remained unchanged under identical conditions.
-
6 after 3 h, while TIPS nitronate remained unchanged under identical conditions.
-
-
-
-
25
-
-
68849106028
-
-
Allyl trimethylsilane readily functions as a SOMOphile to react with radical cations see ref 6a, but it does not itself undergo oxidation to form a radical cation under these conditions
-
Allyl trimethylsilane readily functions as a SOMOphile to react with radical cations (see ref 6a), but it does not itself undergo oxidation to form a radical cation under these conditions.
-
-
-
-
26
-
-
68849121993
-
-
See the Supporting Information for further details
-
See the Supporting Information for further details.
-
-
-
|