-
2
-
-
1042300924
-
-
C.J. Budd, M.D. Piggott, Geometric integration and its applications, in: Handbook of Numerical Analysis, vol. XI, North-Holland, Amsterdam, 2003, pp. 35-139.
-
-
-
-
3
-
-
9544224143
-
Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the "good" Boussinesq equation
-
Chen J.-B. Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the "good" Boussinesq equation. Appl. Math. Comput. 161 (2005) 55-67
-
(2005)
Appl. Math. Comput.
, vol.161
, pp. 55-67
-
-
Chen, J.-B.1
-
4
-
-
0002025756
-
Two energy conserving numerical schemes for the Sine-Gordon equation
-
Fei Z., and Vázquez L. Two energy conserving numerical schemes for the Sine-Gordon equation. Appl. Math. Comput. 45 (1991) 17-30
-
(1991)
Appl. Math. Comput.
, vol.45
, pp. 17-30
-
-
Fei, Z.1
Vázquez, L.2
-
5
-
-
0025444854
-
A Hamiltonian, explicit algorithm with spectral accuracy for the "good" Boussinesq system
-
de Frutos J., Ortega T., and Sanz-Serna J.M. A Hamiltonian, explicit algorithm with spectral accuracy for the "good" Boussinesq system. Comput. Meth. Appl. Mech. Eng. 80 (1990) 417-423
-
(1990)
Comput. Meth. Appl. Mech. Eng.
, vol.80
, pp. 417-423
-
-
de Frutos, J.1
Ortega, T.2
Sanz-Serna, J.M.3
-
6
-
-
84966234616
-
Pseudospectral method for the "good" Boussinesq equation
-
de Frutos J., Ortega T., and Sanz-Serna J.M. Pseudospectral method for the "good" Boussinesq equation. Math. Comp. 57 (1991) 109-122
-
(1991)
Math. Comp.
, vol.57
, pp. 109-122
-
-
de Frutos, J.1
Ortega, T.2
Sanz-Serna, J.M.3
-
7
-
-
0001193685
-
α frac(δ G, δ u) that inherit energy conservation or dissipation property
-
α frac(δ G, δ u) that inherit energy conservation or dissipation property. J. Comput. Phys. 156 (1999) 181-205
-
(1999)
J. Comput. Phys.
, vol.156
, pp. 181-205
-
-
Furihata, D.1
-
8
-
-
0035449128
-
Finite-difference schemes for nonlinear wave equation that inherit energy conservation property
-
Furihata D. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134 (2001) 37-57
-
(2001)
J. Comput. Appl. Math.
, vol.134
, pp. 37-57
-
-
Furihata, D.1
-
9
-
-
45449123467
-
Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators
-
Ge Z., and Marsden J.E. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133 (1998) 134-139
-
(1998)
Phys. Lett. A
, vol.133
, pp. 134-139
-
-
Ge, Z.1
Marsden, J.E.2
-
11
-
-
84965060858
-
Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation
-
Li S., and Vu-Quoc L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32 (1995) 1839-1875
-
(1995)
SIAM J. Numer. Anal.
, vol.32
, pp. 1839-1875
-
-
Li, S.1
Vu-Quoc, L.2
-
13
-
-
0001535009
-
Soliton and antisoliton interactions in the "good" Boussinesq equation
-
Manoranjan V.S., Ortega T., and Sanz-Serna J.M. Soliton and antisoliton interactions in the "good" Boussinesq equation. J. Math. Phys. 29 (1988) 1964-1968
-
(1988)
J. Math. Phys.
, vol.29
, pp. 1964-1968
-
-
Manoranjan, V.S.1
Ortega, T.2
Sanz-Serna, J.M.3
-
14
-
-
33847375695
-
-
T. Matsuo, Discrete variational method and its various extensions, Ph.D. Thesis, Department of Engineering, University of Tokyo, 2003.
-
-
-
-
15
-
-
0037336855
-
High-order schemes for conservative or dissipative systems
-
Matsuo T. High-order schemes for conservative or dissipative systems. J. Comput. Appl. Math. 152 (2003) 305-317
-
(2003)
J. Comput. Appl. Math.
, vol.152
, pp. 305-317
-
-
Matsuo, T.1
-
16
-
-
33847354446
-
-
T. Matsuo, Arbitrary high-order conservative or dissipative method for ordinary differential equations and its block algorithm, METR05-19,〈 http://www.keisu.t.u-tokyo.ac.jp/Research/techrep.0.html〉.
-
-
-
-
17
-
-
0000589798
-
Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations
-
Matsuo T., and Furihata D. Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171 (2001) 425-447
-
(2001)
J. Comput. Phys.
, vol.171
, pp. 425-447
-
-
Matsuo, T.1
Furihata, D.2
-
18
-
-
0347607037
-
Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method
-
Matsuo T., Sugihara M., Furihata D., and Mori M. Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method. Japan J. Indust. Appl. Math. 20 (2003) 311-330
-
(2003)
Japan J. Indust. Appl. Math.
, vol.20
, pp. 311-330
-
-
Matsuo, T.1
Sugihara, M.2
Furihata, D.3
Mori, M.4
-
19
-
-
0042391335
-
Boussinesq's equation as a Hamiltonian system
-
McKean H.P. Boussinesq's equation as a Hamiltonian system. Adv. Math. Suppl. Stud. 3 (1978) 217-226
-
(1978)
Adv. Math. Suppl. Stud.
, vol.3
, pp. 217-226
-
-
McKean, H.P.1
-
20
-
-
0000765110
-
Numerical solution of a nonlinear Klein-Gordon equation
-
Strauss W., and Vazquez L. Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28 (1978) 271-278
-
(1978)
J. Comput. Phys.
, vol.28
, pp. 271-278
-
-
Strauss, W.1
Vazquez, L.2
-
21
-
-
0000060151
-
On stochastization of one-dimensional chains of nonlinear oscillators
-
Zakharov V.E. On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys.-JETP 38 (1974) 108-110
-
(1974)
Sov. Phys.-JETP
, vol.38
, pp. 108-110
-
-
Zakharov, V.E.1
-
22
-
-
0037401905
-
Numerical investigation for the solitary waves interaction of the "good" Boussinesq equation
-
El-Zoheiry H. Numerical investigation for the solitary waves interaction of the "good" Boussinesq equation. Appl. Numer. Math. 45 (2003) 161-173
-
(2003)
Appl. Numer. Math.
, vol.45
, pp. 161-173
-
-
El-Zoheiry, H.1
|