-
1
-
-
0142216144
-
Multi-symplectic methods for the coupled 1D nonlinear Schnidinger system
-
Sun Jianqiang, Qin Mengzhao. Multi-symplectic methods for the coupled 1D nonlinear Schnidinger system[J]. Computer Physics Communications, 2003, 155: 221-235.
-
(2003)
Computer Physics Communications
, vol.155
, pp. 221-235
-
-
Sun, J.1
Qin, M.2
-
2
-
-
33645456610
-
Multisymplectic difference schemes for coupled nonlinear Schrodinger system
-
Sun Jianqiang, Gu Xiaoyan, Ma Zhongqi. Multisymplectic difference schemes for coupled nonlinear Schrodinger system[J]. Chinese J Comput Phys, 2004, 21: 321-328.
-
(2004)
Chinese J Comput Phys
, vol.21
, pp. 321-328
-
-
Sun, J.1
Gu, X.2
Ma, Z.3
-
6
-
-
0033074434
-
Multi solitons perturbation theory for Themanakov equations and its applications to nonlinear optics
-
Yang J. Multi solitons perturbation theory for Themanakov equations and its applications to nonlinear optics[J]. Phys Rev E, 1999, 59: 2393.
-
(1999)
Phys Rev E
, vol.59
, pp. 2393
-
-
Yang, J.1
-
7
-
-
0000394530
-
Hydrodynamics of a superfluid condensate
-
Gross E P. Hydrodynamics of a superfluid condensate[J]. J Math Phys, 1963, 4(2): 195-207.
-
(1963)
J Math Phys
, vol.4
, Issue.2
, pp. 195-207
-
-
Gross, E.P.1
-
8
-
-
0000196586
-
Vortex lines in an imperfect Bose gas
-
Pitaevskii L P. Vortex lines in an imperfect Bose gas[J]. Soviet Phys, 1961, JETP 13 (August (2)): 451-454.
-
(1961)
Soviet Phys
, vol.JETP 13
, Issue.2
, pp. 451-454
-
-
Pitaevskii, L.P.1
-
9
-
-
23144432839
-
Strong coupling of Schrödinger equations: Conservative scheme approach
-
Sonnier W J, Christov C I. Strong coupling of Schrödinger equations: Conservative scheme approach[J]. Mathematics and Computers in Simulation, 2005, 69: 514-525.
-
(2005)
Mathematics and Computers in Simulation
, vol.69
, pp. 514-525
-
-
Sonnier, W.J.1
Christov, C.I.2
-
10
-
-
0041897399
-
A conservative difference scheme for the Zakharov equations
-
Chang Qianshun, Jiang Hong. A conservative difference scheme for the Zakharov equations[J]. J Comput Phys, 1994, 113: 309-319.
-
(1994)
J Comput Phys
, vol.113
, pp. 309-319
-
-
Chang, Q.1
Jiang, H.2
-
11
-
-
12444285822
-
Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr̈dinger equations in one space dimension
-
Zhang Luming. Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr̈dinger equations in one space dimension[J]. Appl Math Comput, 2005, 163: 343-355.
-
(2005)
Appl Math Comput
, vol.163
, pp. 343-355
-
-
Zhang, L.1
-
13
-
-
33751539666
-
Analysis of some new conservative schemes for nonlinear Schrodinger equation with wave operator
-
Wang Tingchun, Zhang Luming. Analysis of some new conservative schemes for nonlinear Schrodinger equation with wave operator[J]. Appl Math Comput, 2006, 182(2): 1780-1794.
-
(2006)
Appl Math Comput
, vol.182
, Issue.2
, pp. 1780-1794
-
-
Wang, T.1
Zhang, L.2
-
14
-
-
33751409721
-
A conservative remapping algorithm for polygonal staggered meshes
-
Wen Wanzhi, Lin Zhong, Wang Ruili, Fu Shangwu. A conservative remapping algorithm for polygonal staggered meshes[J]. Chinese J Comput Phys, 2006, 23(5): 511-517.
-
(2006)
Chinese J Comput Phys
, vol.23
, Issue.5
, pp. 511-517
-
-
Wen, W.1
Lin, Z.2
Wang, R.3
Fu, S.4
-
15
-
-
41949098585
-
A multisymplectic Fourier pseudo-spectral scheme for the SRLW equation and conservation laws
-
Kong Linghua, Zeng Wenping, Liu Ruxun, Kong Lingjian. A multisymplectic Fourier pseudo-spectral scheme for the SRLW equation and conservation laws[J]. Chinese J Comput Phys, 2004, 21(4): 329-334.
-
(2004)
Chinese J Comput Phys
, vol.21
, Issue.4
, pp. 329-334
-
-
Kong, L.1
Zeng, W.2
Liu, R.3
Kong, L.4
-
16
-
-
41949115149
-
A kind of rezoning (remapping) algorithms based on ENO interpolation
-
Wang Yongjian, Zhao Ning. A kind of rezoning (remapping) algorithms based on ENO interpolation[J]. Chinese J Comput Phys, 2006, 23(1): 25-31.
-
(2006)
Chinese J Comput Phys
, vol.23
, Issue.1
, pp. 25-31
-
-
Wang, Y.1
Zhao, N.2
-
17
-
-
84965060858
-
Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation
-
Li S, Vu-Quoc L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation[J]. SIAM J Numer Anal, 1995, 32: 1839-1875.
-
(1995)
SIAM J Numer Anal
, vol.32
, pp. 1839-1875
-
-
Li, S.1
Vu-Quoc, L.2
-
18
-
-
0010295721
-
Numerical simulation of nonlinear Schrodinger systems: A new conservative scheme
-
Zhang F, et al. Numerical simulation of nonlinear Schrodinger systems: a new conservative scheme[J]. Appl Math Comput, 1995, 71: 165-177.
-
(1995)
Appl Math Comput
, vol.71
, pp. 165-177
-
-
Zhang, F.1
|