메뉴 건너뛰기




Volumn 5, Issue 7, 2009, Pages 1959-1974

Improved SVM and ANN in incipient fault diagnosis of power transformers using clonal selection algorithms

Author keywords

Clonal selection algorithm; Diagnosis; Incipient fault; Power transformer; SVM

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CLONAL SELECTION ALGORITHM; CLONAL SELECTION ALGORITHMS; COMPUTATIONAL TOOLS; FAULT DIAGNOSIS; HIGH DIMENSIONALITY; INCIPIENT FAULT; INCIPIENT FAULT DIAGNOSIS; INCIPIENT FAULTS; KERNEL PARAMETER; MACHINE-LEARNING; NON-LINEARITY; RADIAL BASIS FUNCTIONS; STATISTICAL LEARNING THEORY; SVM;

EID: 67749135362     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (25)
  • 1
    • 0018021576 scopus 로고
    • IEEE And IEC codes to interpret faults in transformers using gas in oil analysis
    • R. R. Rogers, IEEE And IEC codes to interpret faults in transformers using gas in oil analysis, IEEE Trans Electron. Insulat, vol.13, no.5, pp.349-354, 1978.
    • (1978) IEEE Trans Electron. Insulat , vol.13 , Issue.5 , pp. 349-354
    • Rogers, R.R.1
  • 2
    • 67749124779 scopus 로고    scopus 로고
    • An expert system for fault diagnosis in transformers during impulse tests
    • P. Purkait and S. Chakravorti, An expert system for fault diagnosis in transformers during impulse tests, PES Winter Meeting, vol.3, pp.23-27, 2000.
    • (2000) PES Winter Meeting , vol.3 , pp. 23-27
    • Purkait, P.1    Chakravorti, S.2
  • 3
    • 0141883202 scopus 로고    scopus 로고
    • A new data mining approach to dissolved gas analysis of oil-insulated power apparatus
    • C. H. Yann, A new data mining approach to dissolved gas analysis of oil-insulated power apparatus, IEEE Trans. Power Deliv, vol.18, no.4, pp.1257-1261, 2003.
    • (2003) IEEE Trans. Power Deliv , vol.18 , Issue.4 , pp. 1257-1261
    • Yann, C.H.1
  • 4
    • 14844302801 scopus 로고    scopus 로고
    • Fault diagnosis model power transformer based on statistical learning theory and DGA
    • M. Dong, Fault diagnosis model power transformer based on statistical learning theory and DGA, IEEE 2004 International Symposium on Electrical Insulation, pp.85-88, 2004.
    • (2004) IEEE 2004 International Symposium on Electrical Insulation , pp. 85-88
    • Dong, M.1
  • 6
    • 67749129575 scopus 로고    scopus 로고
    • IEEE guide for the interpretation of gases generated in Oil-immersed transformers, IEEE Std.C57.104, 1991.
    • IEEE guide for the interpretation of gases generated in Oil-immersed transformers, IEEE Std.C57.104, 1991.
  • 7
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks: Augmented by genetic algorithms
    • L. B. Jack and A. K. Nandi, Fault detection using support vector machines and artificial neural networks: augmented by genetic algorithms, Mech. Syst. Signal Process., vol.16, no.2-3, pp.373-390, 2002.
    • (2002) Mech. Syst. Signal Process , vol.16 , Issue.2-3 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 8
  • 11
    • 0038155365 scopus 로고    scopus 로고
    • Evolving neural nets for fault diagnosis of power transformers
    • C. H. Yann, Evolving neural nets for fault diagnosis of power transformers, IEEE Trans. Power Deliv, vol.18, no.3, pp.843-848, 2003.
    • (2003) IEEE Trans. Power Deliv , vol.18 , Issue.3 , pp. 843-848
    • Yann, C.H.1
  • 12
    • 0346780225 scopus 로고    scopus 로고
    • Extension neural network for power transformer incipient fault diagnosis
    • M. H. Wang, Extension neural network for power transformer incipient fault diagnosis, Proc. of the IEE on Generation, Transmission and Distribution, vol.150, no.6, pp.679-685, 2003.
    • (2003) Proc. of the IEE on Generation, Transmission and Distribution , vol.150 , Issue.6 , pp. 679-685
    • Wang, M.H.1
  • 17
    • 48249149082 scopus 로고    scopus 로고
    • Output feedback tracking control for a class of MIMO nonlinear minimum phase systems based on RBF neural networks
    • S. J. Zhang and S. S. Hu, Output feedback tracking control for a class of MIMO nonlinear minimum phase systems based on RBF neural networks, International Journal of Innovative Computing, Information and Control, vol.4, no.4, pp.803-812, 2008.
    • (2008) International Journal of Innovative Computing, Information and Control , vol.4 , Issue.4 , pp. 803-812
    • Zhang, S.J.1    Hu, S.S.2
  • 18
    • 51149111739 scopus 로고    scopus 로고
    • Fault classification based upon self organizing feature maps and dynamic principal component analysis for inertial sensor drift
    • H. B. Perez, F. Garcia-Nocetti and H. Thompson, Fault classification based upon self organizing feature maps and dynamic principal component analysis for inertial sensor drift, International Journal of Innovative Computing, Information and Control, vol.3, no.2, pp.257-276, 2007.
    • (2007) International Journal of Innovative Computing, Information and Control , vol.3 , Issue.2 , pp. 257-276
    • Perez, H.B.1    Garcia-Nocetti, F.2    Thompson, H.3
  • 19
    • 0035271917 scopus 로고    scopus 로고
    • Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases
    • M. Duval, Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases, IEEE Electrical Insulation Magazine, vol.17, no.2, 2001.
    • (2001) IEEE Electrical Insulation Magazine , vol.17 , Issue.2
    • Duval, M.1
  • 20
    • 0004063090 scopus 로고    scopus 로고
    • 2nd Edition, Prentice Hall
    • S. Haykin, Neural Networks, 2nd Edition, Prentice Hall, 1999.
    • (1999) Neural Networks
    • Haykin, S.1
  • 21
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta, Gear fault detection using artificial neural networks and support vector machines with genetic algorithms, Mech. Syst. Signal Process, vol.18, pp.625-644, 2004.
    • (2004) Mech. Syst. Signal Process , vol.18 , pp. 625-644
    • Samanta, B.1
  • 23
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electricity load based on recurrent SVM with GA
    • P. F. Pai and W. C. Hong, Forecasting regional electricity load based on recurrent SVM with GA, Electric Power System Research, vol.74, pp.417-425, 2005.
    • (2005) Electric Power System Research , vol.74 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 24
    • 0004125427 scopus 로고    scopus 로고
    • Artificial immune systems: Part I - Basic theory and applications,
    • Technical Report, RT DCA 01/99, pp
    • L. N. de Castro and F. J. Von Zuben, Artificial immune systems: Part I - Basic theory and applications, Technical Report - RT DCA 01/99, pp.90, 1999.
    • (1999) , pp. 90
    • de Castro, L.N.1    Von Zuben, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.