-
1
-
-
54149114328
-
-
(a) Poisson, T.; Oudeyer, S.; Dalla, V.; Marsais, F.; Levacher, V. Synlett 2008, 2447.
-
(2008)
Synlett
, pp. 2447
-
-
Poisson, T.1
Oudeyer, S.2
Dalla, V.3
Marsais, F.4
Levacher, V.5
-
3
-
-
45549100093
-
-
Marinescu, S.; Nishimata, T.; Mohr, J.; Stoltz, B. M. Org Lett. 2008, 10, 1039.
-
(2008)
Org Lett
, vol.10
, pp. 1039
-
-
Marinescu, S.1
Nishimata, T.2
Mohr, J.3
Stoltz, B.M.4
-
4
-
-
34848866929
-
-
Poisson, T.; Dalla, V.; Marsais, F.; Dupas, G.; Oudeyer, S.; Levacher, V. Angew. Chem., Int. Ed. 2007, 46, 7090.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 7090
-
-
Poisson, T.1
Dalla, V.2
Marsais, F.3
Dupas, G.4
Oudeyer, S.5
Levacher, V.6
-
5
-
-
33646441004
-
-
(e) Mitsuhashi, K.; Ito, R.; Arai, T.; Yanagisawa, A. Org. Lett. 2006, 8, 1721.
-
(2006)
Org. Lett
, vol.8
, pp. 1721
-
-
Mitsuhashi, K.1
Ito, R.2
Arai, T.3
Yanagisawa, A.4
-
6
-
-
16244391157
-
-
(f) Yanagisawa, A.; Touge, T.; Arai, T. Angew. Chem., Int. Ed. 2005, 44, 1546.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 1546
-
-
Yanagisawa, A.1
Touge, T.2
Arai, T.3
-
7
-
-
0030724513
-
-
For reviews of enantioselective protonation of prochiral metal enolates, see
-
(g) Sugiura, M.; Nakai, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2366. For reviews of enantioselective protonation of prochiral metal enolates, see:
-
(1997)
Angew. Chem., Int. Ed. Engl
, vol.36
, pp. 2366
-
-
Sugiura, M.1
Nakai, T.2
-
8
-
-
9644291545
-
-
(h) Duhamel, L.; Duhamel, P.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2004, 15, 3653.
-
(2004)
Tetrahedron: Asymmetry
, vol.15
, pp. 3653
-
-
Duhamel, L.1
Duhamel, P.2
Plaquevent, J.-C.3
-
11
-
-
84924187517
-
-
See Supporting Information for details
-
See Supporting Information for details.
-
-
-
-
12
-
-
84924100157
-
-
Ligand 1, which provides a completely different higher-order structure (2:3 and/or 4:5 complex), and ligand 4, which provides a 5:6 complex but contains a more electron-rich catechol (thus, containing a less acidic proton in the catalyst), produced strikingly reduced enantioselectivity (less than 42% ee).
-
Ligand 1, which provides a completely different higher-order structure (2:3 and/or 4:5 complex), and ligand 4, which provides a 5:6 complex but contains a more electron-rich catechol (thus, containing a less acidic proton in the catalyst), produced strikingly reduced enantioselectivity (less than 42% ee).
-
-
-
-
13
-
-
57549091031
-
-
For examples of catalytic sequential conjugate addition-enantioselective protonation, see: (a) Sibi, M. P, Coulomb, J, Stanley, L. M. Angew. Chem, Int. Ed. 2008, 47, 9913
-
For examples of catalytic sequential conjugate addition-enantioselective protonation, see: (a) Sibi, M. P.; Coulomb, J.; Stanley, L. M. Angew. Chem., Int. Ed. 2008, 47, 9913.
-
-
-
-
14
-
-
49649104027
-
-
(b) Leow, D.; Lin, S.; Chittimalla, S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed. 2008, 47, 5641.
-
(2008)
Angew. Chem., Int. Ed
, vol.47
, pp. 5641
-
-
Leow, D.1
Lin, S.2
Chittimalla, S.K.3
Fu, X.4
Tan, C.-H.5
-
15
-
-
43249097055
-
-
Navarre, L.; Martinez, R.; Genet, J.-P.; Darses, S. J. Am. Chem. Soc. 2008,130, 6159.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 6159
-
-
Navarre, L.1
Martinez, R.2
Genet, J.-P.3
Darses, S.4
-
16
-
-
1042279654
-
-
Navarre, L.; Darses, S.; Genet, J.-P. Angew. Chem., Int. Ed. 2004, 43, 719.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 719
-
-
Navarre, L.1
Darses, S.2
Genet, J.-P.3
-
17
-
-
33846601028
-
-
(e) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 768
-
-
Wang, B.1
Wu, F.2
Wang, Y.3
Liu, X.4
Deng, L.5
-
18
-
-
34250683060
-
-
(f) Frost, C. G.; Penrose, S. D.; Lambshead, K.; Raithby, P. R.; Warren, J. E.; Gleave, R. Org. Lett. 2007, 9, 2119.
-
(2007)
Org. Lett
, vol.9
, pp. 2119
-
-
Frost, C.G.1
Penrose, S.D.2
Lambshead, K.3
Raithby, P.R.4
Warren, J.E.5
Gleave, R.6
-
19
-
-
33644650016
-
-
(g) Nishimura, T.; Hirabayashi, S.; Yasuhara, Y.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 2556.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 2556
-
-
Nishimura, T.1
Hirabayashi, S.2
Yasuhara, Y.3
Hayashi, T.4
-
21
-
-
2642518615
-
-
Sibi, M. P.; Patil, K. Angew. Chem., Int. Ed. 2004, 43, 1235.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 1235
-
-
Sibi, M.P.1
Patil, K.2
-
23
-
-
2942629592
-
-
(k) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861.
-
(2004)
Org. Lett
, vol.6
, pp. 1861
-
-
Hamashima, Y.1
Somei, H.2
Shimura, Y.3
Tamura, T.4
Sodeoka, M.5
-
24
-
-
0032577033
-
-
Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 4043
-
-
Emori, E.1
Arai, T.2
Sasai, H.3
Shibasaki, M.4
-
25
-
-
34248684099
-
-
For a catalytic enantioselective conjugate cyanation of β-substituted, α-unsubstituted VV-acyl pyrroles catalyzed by a Gd complex derived from 2, see: Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Sato, A.; Furusho, S.; Kanai, M.; Shibasaki, M. Tetrahedron 2007, 63, 5820.
-
For a catalytic enantioselective conjugate cyanation of β-substituted, α-unsubstituted VV-acyl pyrroles catalyzed by a Gd complex derived from 2, see: Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Sato, A.; Furusho, S.; Kanai, M.; Shibasaki, M. Tetrahedron 2007, 63, 5820.
-
-
-
-
26
-
-
2942635094
-
-
(a) Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7559.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 7559
-
-
Matsunaga, S.1
Kinoshita, T.2
Okada, S.3
Harada, S.4
Shibasaki, M.5
-
27
-
-
0037009019
-
-
(b) Evans, D. A.; Borg, G.; Scheidt, K. A. Angew. Chem., Int. Ed. 2002, 41, 3188.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 3188
-
-
Evans, D.A.1
Borg, G.2
Scheidt, K.A.3
-
28
-
-
84924176598
-
-
The use of DMP as a proton source afforded less satisfactory enantiose- lectivity, and ligand 3 demonstrated no significant advantage compared to 2. The reaction rate and enantioselectivity were much lower when using a catalytic amount of TMSCN (10 mol %)and 1 equiv of HCN (11:90h, 61% yield, 50% ee; cf. Table 2, entry 1).
-
The use of DMP as a proton source afforded less satisfactory enantiose- lectivity, and ligand 3 demonstrated no significant advantage compared to 2. The reaction rate and enantioselectivity were much lower when using a catalytic amount of TMSCN (10 mol %)and 1 equiv of HCN (11:90h, 61% yield, 50% ee; cf. Table 2, entry 1).
-
-
-
-
29
-
-
41449104100
-
-
A catalytic asymmetric cross-coupling reaction to generate carboxylic acid derivatives containing a-aryl-substituted tertiary stereocenters: Dai, X, Strotman, N. A, Fu, G. C. J. Am. Chem. Soc. 2008, 130, 3302
-
(a) A catalytic asymmetric cross-coupling reaction to generate carboxylic acid derivatives containing a-aryl-substituted tertiary stereocenters: Dai, X.; Strotman, N. A.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 3302.
-
-
-
-
30
-
-
0034607295
-
-
Organocatalyzed redox alkylation and arylation of aldehydes
-
(b) Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063. Organocatalyzed redox alkylation and arylation of aldehydes:
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 3063
-
-
Davies, H.M.L.1
Hansen, T.2
Churchill, M.R.3
-
32
-
-
67749114483
-
-
Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Brase, S. J. Am. Chem. Soc. 2009, 131, 2086.
-
(2009)
J. Am. Chem. Soc
, vol.131
, pp. 2086
-
-
Nicolaou, K.C.1
Reingruber, R.2
Sarlah, D.3
Brase, S.4
-
33
-
-
84924092456
-
-
Based on the absolute configuration of 11, the geometry of the reactive intermediate enolate 7 generated via conjugate cyanation would be E (when the priority of R is higher than the cyanomethyl group).
-
Based on the absolute configuration of 11, the geometry of the reactive intermediate enolate 7 generated via conjugate cyanation would be E (when the priority of R is higher than the cyanomethyl group).
-
-
-
|