메뉴 건너뛰기




Volumn 47, Issue 7, 2009, Pages 2172-2181

Automatic ground-truth validation with genetic algorithms for multispectral image classification

Author keywords

Genetic algorithms (GAs); Ground truth validation; JeffriesMatusita (JM) distance measure; Mislabeling issue; Multiobjective optimization

Indexed keywords

AUTOMATIC DETECTION; CANDIDATE SOLUTION; CLASSIFICATION PROCESS; GENETIC OPTIMIZATION; GENETIC OPTIMIZATION PROCESS; GROUND-TRUTH VALIDATION; JEFFRIESMATUSITA (JM) DISTANCE MEASURE; JOINT OPTIMIZATION; LEARNING SAMPLES; MISLABELING ISSUE; MULTISPECTRAL IMAGE CLASSIFICATION; NEGATIVE IMPACTS; NOVEL METHODS; OPTIMIZATION PROBLEMS; REAL DATA SETS; STATISTICAL DISTANCE; VALIDATION METHODS;

EID: 67651154162     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2009.2013693     Document Type: Article
Times cited : (18)

References (20)
  • 1
    • 67651199330 scopus 로고    scopus 로고
    • R.O.Duda,P.E.Hart, andD.G.Stork, Pattern Classification, 2nd ed. New York: Wiley, 2001.
    • R.O.Duda,P.E.Hart, andD.G.Stork, Pattern Classification, 2nd ed. New York: Wiley, 2001.
  • 3
    • 34547697572 scopus 로고    scopus 로고
    • Classification in the presence of class noise using a probabilistic kernel Fisher method
    • Dec
    • Y. Li, L. F. A. Wessels, D. de Ridder, and M. J. T. Reinders, "Classification in the presence of class noise using a probabilistic kernel Fisher method," Pattern Recognit., vol. 40, no. 12, pp. 3349-3357, Dec. 2007.
    • (2007) Pattern Recognit , vol.40 , Issue.12 , pp. 3349-3357
    • Li, Y.1    Wessels, L.F.A.2    de Ridder, D.3    Reinders, M.J.T.4
  • 4
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest rules using edited data
    • Jul
    • D. R. Wilson, "Asymptotic properties of nearest rules using edited data," IEEE Trans. Syst., Man, Cybern., vol. SMC-2, no. 3, pp. 408-421, Jul. 1972.
    • (1972) IEEE Trans. Syst., Man, Cybern , vol.SMC-2 , Issue.3 , pp. 408-421
    • Wilson, D.R.1
  • 5
    • 0031101089 scopus 로고    scopus 로고
    • Simplifying decision trees: A survey
    • Jan
    • L. A. Breslow and D. Aha, "Simplifying decision trees: A survey," Knowl. Eng. Rev., vol. 12, no. 1, pp. 1-40, Jan. 1997.
    • (1997) Knowl. Eng. Rev , vol.12 , Issue.1 , pp. 1-40
    • Breslow, L.A.1    Aha, D.2
  • 6
    • 0000046054 scopus 로고    scopus 로고
    • Identifying mislabeled training data
    • C. E. Brodley and M. A. Friedl, "Identifying mislabeled training data," J. Artif. Intell. Res., vol. 11, pp. 131-167, 1999.
    • (1999) J. Artif. Intell. Res , vol.11 , pp. 131-167
    • Brodley, C.E.1    Friedl, M.A.2
  • 7
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Nov
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374-3385, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 8
    • 57649135391 scopus 로고    scopus 로고
    • N. Ghoggali and F. Melgani, Genetic SVM approach to semisupervised multitemporal classification, IEEE Geosci. Remote Sens. Lett.,5, no. 2, pp. 212-216, Apr. 2008.
    • N. Ghoggali and F. Melgani, "Genetic SVM approach to semisupervised multitemporal classification," IEEE Geosci. Remote Sens. Lett.,vol.5, no. 2, pp. 212-216, Apr. 2008.
  • 9
    • 67651186090 scopus 로고    scopus 로고
    • V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998. [10] F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., 42, no. 8, pp. 1778-1790, Aug. 2004.
    • V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998. [10] F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
  • 10
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of support vector machines for classification of multisensor data
    • Dec
    • B. Waske and J. A. Benediktsson, "Fusion of support vector machines for classification of multisensor data," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3858-3866, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.A.2
  • 11
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary SVM classification: Implications for training and classification users
    • Apr
    • A. Mathur and G. M. Foody, "Multiclass and binary SVM classification: Implications for training and classification users," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 241-245, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , Issue.2 , pp. 241-245
    • Mathur, A.1    Foody, G.M.2
  • 12
    • 33644859269 scopus 로고    scopus 로고
    • Cell algorithms with data inflation for non-parametric classification
    • May
    • A. Palau, F. Melgani, and S. B. Serpico, "Cell algorithms with data inflation for non-parametric classification," Pattern Recognit. Lett., vol. 27, no. 7, pp. 781-790, May 2006.
    • (2006) Pattern Recognit. Lett , vol.27 , Issue.7 , pp. 781-790
    • Palau, A.1    Melgani, F.2    Serpico, S.B.3
  • 13
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • Jun
    • E. Blanzieri and F. Melgani, "Nearest neighbor classification of remote sensing images with the maximal margin principle," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1804-1811, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 14
    • 45849090383 scopus 로고    scopus 로고
    • Supervised classification of remotely sensed imagery using a modified k-NN technique
    • Jul
    • L. Samaniego, A. Bardossy, and K. Schulz, "Supervised classification of remotely sensed imagery using a modified k-NN technique," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 2112-2125, Jul. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.7 , pp. 2112-2125
    • Samaniego, L.1    Bardossy, A.2    Schulz, K.3
  • 15
    • 67649809802 scopus 로고    scopus 로고
    • A genetic automatic ground-truth validation method for multispectral remote sensing images
    • Boston, MA, Jul
    • N. Ghoggali and F. Melgani, "A genetic automatic ground-truth validation method for multispectral remote sensing images," in Proc. IEEE-IGARSS, Boston, MA, Jul. 2008, vol. 4, pp. 538-541.
    • (2008) Proc. IEEE-IGARSS , vol.4 , pp. 538-541
    • Ghoggali, N.1    Melgani, F.2
  • 19
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Apr
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002.
    • (2002) IEEE Trans. Evol. Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 20
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • May
    • B.-C. Kuo and D. A. Landgrebe, "Nonparametric weighted feature extraction for classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096-1105, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.-C.1    Landgrebe, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.