-
1
-
-
67650648783
-
Nonlinear Schrodinger systems: Continuous and discrete
-
M. Ablowitz B. Prinari 2008 Nonlinear Schrodinger systems: continuous and discrete Scholarpedia 3 8 5561
-
(2008)
Scholarpedia
, vol.3
, Issue.8
, pp. 5561
-
-
Ablowitz, M.1
Prinari, B.2
-
2
-
-
0003956968
-
-
Prentice Hall Englewood Cliffs, NJ
-
Artin M.: Algebra. Prentice Hall, Englewood Cliffs, NJ (1991)
-
(1991)
Algebra
-
-
Artin, M.1
-
4
-
-
33748581914
-
Cantor families of periodic solutions for completely resonant nonlinear wave equations
-
DOI 10.1215/S0012-7094-06-13424-5
-
M. Berti Ph. Bolle 2006 Cantor families of periodic solutions for completely resonant nonlinear wave equations Duke Math. J. 134 2 359 419 (Pubitemid 44367794)
-
(2006)
Duke Mathematical Journal
, vol.134
, Issue.2
, pp. 359-419
-
-
Berti, M.1
Bolle, P.2
-
6
-
-
38349039920
-
Cantor families of periodic solutions for wave equations via a variational principle
-
M. Berti Ph. Bolle 2008 Cantor families of periodic solutions for wave equations via a variational principle Adv. Math. 217 4 1671 1727
-
(2008)
Adv. Math.
, vol.217
, Issue.4
, pp. 1671-1727
-
-
Berti, M.1
Bolle, Ph.2
-
8
-
-
34249756262
-
Construction of periodic solutions of nonlinear wave equations in higher dimension
-
J. Bourgain 1995 Construction of periodic solutions of nonlinear wave equations in higher dimension Geom. Funct. Anal. 5 629 639
-
(1995)
Geom. Funct. Anal.
, vol.5
, pp. 629-639
-
-
Bourgain, J.1
-
9
-
-
0032272850
-
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
-
J. Bourgain 1998 Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations Ann. of Math. 148 2 363 439 (Pubitemid 128376872)
-
(1998)
Annals of Mathematics
, vol.148
, Issue.2
, pp. 363-439
-
-
Bourgain, J.1
-
10
-
-
0002492231
-
Periodic solutions of nonlinear wave equations
-
(Chicago, IL, 1996), Chicago Lectures in Mathematics, Chicago, IL: University Chicago Press
-
Bourgain, J.: Periodic solutions of nonlinear wave equations. In: Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Mathematics, Chicago, IL: University Chicago Press, 1999, pp. 69-97
-
(1999)
Harmonic Analysis and Partial Differential Equations
, pp. 69-97
-
-
Bourgain, J.1
-
11
-
-
84860070594
-
Green's Function Estimates for Lattice Schrödinger Operators and Applications
-
Princeton, NJ: Princeton University Press
-
Bourgain, J.: Green's Function Estimates for Lattice Schrödinger Operators and Applications. Ann. Math. Studies 158, Princeton, NJ: Princeton University Press, 2005
-
(2005)
Ann. Math. Studies
, vol.158
-
-
Bourgain, J.1
-
12
-
-
0001055171
-
Analytic form of differential equations. I, II
-
ibid. 26, 199-239 (1972)
-
Bruno, A.D.: Analytic form of differential equations. I, II. Trudy Moskov. Mat. Obšč. 25, 119-262 (1971); ibid. 26, 199-239 (1972)
-
(1971)
Trudy Moskov. Mat. Obšč
, vol.25
, pp. 119-262
-
-
Bruno, A.D.1
-
13
-
-
27944431626
-
Nonlinear Scattering: the States Which Are Close to a Soliton
-
V.S. Buslaev G.S. Perelman 1995 Nonlinear scattering: the states which are close to a soliton J. Math. Sci. 77 3 3161 3169 (Pubitemid 126035519)
-
(1995)
Journal of mathematical sciences
, vol.77
, Issue.3
, pp. 3161-3169
-
-
Buslaev, V.S.1
Perelman, G.S.2
-
14
-
-
0040799578
-
Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems
-
Ch.-Q. Cheng 1996 Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems Commun. Math. Phys. 177 3 529 559
-
(1996)
Commun. Math. Phys.
, vol.177
, Issue.3
, pp. 529-559
-
-
Cheng, Ch.-Q.1
-
15
-
-
0034349017
-
KAM tori for 1D nonlinear wave equations with periodic boundary conditions
-
L. Chierchia J. You 2000 KAM tori for 1D nonlinear wave equations with periodic boundary conditions Commun. Math. Phys. 211 2 497 525
-
(2000)
Commun. Math. Phys.
, vol.211
, Issue.2
, pp. 497-525
-
-
Chierchia, L.1
You, J.2
-
16
-
-
84990576596
-
Newton's method and periodic solutions of nonlinear wave equations
-
W. Craig C.E. Wayne 1993 Newton's method and periodic solutions of nonlinear wave equations Comm. Pure Appl. Math. 46 1409 1498
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, pp. 1409-1498
-
-
Craig, W.1
Wayne, C.E.2
-
17
-
-
78149307954
-
KAM for non-linear Schrödinger equation
-
to appear, available at
-
Eliasson, L.H., Kuksin, S.: KAM for non-linear Schrödinger equation. Ann. of Math., to appear, available at http://pjm.math.berkeley.edu/editorial/ uploads/annals/accepted/080510-Eliasson/080510-Eliasson-v2.pdf
-
Ann. of Math.
-
-
Eliasson, L.H.1
Kuksin, S.2
-
18
-
-
21344496040
-
Twistless KAM tori
-
G. Gallavotti 1994 Twistless KAM tori Commun. Math. Phys. 164 1 145 156
-
(1994)
Commun. Math. Phys.
, vol.164
, Issue.1
, pp. 145-156
-
-
Gallavotti, G.1
-
19
-
-
31144454113
-
A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces
-
DOI 10.1007/s00220-005-1497-0
-
J. Geng J. You 2006 A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces Commun. Math. Phys. 262 2 343 372 (Pubitemid 43130330)
-
(2006)
Communications in Mathematical Physics
, vol.262
, Issue.2
, pp. 343-372
-
-
Geng, J.1
You, J.2
-
20
-
-
33748876453
-
KAM tori for higher dimensional beam equations with constant potentials
-
DOI 10.1088/0951-7715/19/10/007, PII S0951771506122926, 007
-
J. Geng J. You 2006 KAM tori for higher dimensional beam equations with constant potentials Nonlinearity 19 10 2405 2423 (Pubitemid 44418895)
-
(2006)
Nonlinearity
, vol.19
, Issue.10
, pp. 2405-2423
-
-
Geng, J.1
You, J.2
-
21
-
-
4344709451
-
Construction of periodic solutions of nonlinear wave equations with Dirichlet boundary conditions by the Lindstedt series method
-
DOI 10.1016/j.matpur.2004.01.007, PII S002178240400008X
-
G. Gentile V. Mastropietro 2004 Construction of periodic solutions of nonlinear wave equations with Dirichlet boundary conditions by the Lindstedt series method J. Math. Pures Appl. (9) 83 8 1019 1065 (Pubitemid 39150714)
-
(2004)
Journal des Mathematiques Pures et Appliquees
, vol.83
, Issue.8
, pp. 1019-1065
-
-
Gentile, G.1
Mastropietro, V.2
-
22
-
-
17744365990
-
Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions
-
DOI 10.1007/s00220-004-1255-8
-
G. Gentile V. Mastropietro M. Procesi 2005 Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions Commun. Math. Phys. 256 2 437 490 (Pubitemid 40579684)
-
(2005)
Communications in Mathematical Physics
, vol.256
, Issue.2
, pp. 437-490
-
-
Gentile, G.1
Mastropietro, V.2
Procesi, M.3
-
23
-
-
31744435248
-
Conservation of resonant periodic solutions for the one-dimensional nonlinear Schrödinger equation
-
DOI 10.1007/s00220-005-1409-3
-
G. Gentile M. Procesi 2006 Conservation of resonant periodic solutio.ns for the one-dimensional nonlinear Schrödinger equation Commun. Math. Phys. 262 3 533 553 (Pubitemid 43177334)
-
(2006)
Communications in Mathematical Physics
, vol.262
, Issue.3
, pp. 533-553
-
-
Gentile, G.1
Procesi, M.2
-
24
-
-
53349156973
-
Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension
-
G. Gentile M. Procesi 2008 Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension J. Diff. Eqs. 245 11 3095 3544
-
(2008)
J. Diff. Eqs.
, vol.245
, Issue.11
, pp. 3095-3544
-
-
Gentile, G.1
Procesi, M.2
-
25
-
-
34948859449
-
Relaxation of solitons in nonlinear Schrödinger equations with potential
-
Zh. Gang I.M. Sigal 2007 Relaxation of solitons in nonlinear Schrödinger equations with potential Adv. Math. 216 2 443 490
-
(2007)
Adv. Math.
, vol.216
, Issue.2
, pp. 443-490
-
-
Gang, Zh.1
Sigal, I.M.2
-
27
-
-
0001836195
-
Nearly Integrable Infinite-Dimensional Hamiltonian Systems
-
Berlin: Springer-Verlag
-
Kuksin, S.B.: Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Mathematics 1556, Berlin: Springer-Verlag, 1993
-
(1993)
Lecture Notes in Mathematics
, vol.1556
-
-
Kuksin, S.B.1
-
28
-
-
0040157758
-
Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation
-
S.B. Kuksin J. Pöschel 1996 Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation Ann. of Math. 143 1 149 179
-
(1996)
Ann. of Math.
, vol.143
, Issue.1
, pp. 149-179
-
-
Kuksin, S.B.1
Pöschel, J.2
-
29
-
-
3042570326
-
Convergent series expansions for quasi-periodic motions
-
J. Moser 1967 Convergent series expansions for quasi-periodic motions Math. Ann. 169 136 176
-
(1967)
Math. Ann.
, vol.169
, pp. 136-176
-
-
Moser, J.1
-
30
-
-
0030443654
-
Quasi-periodic solutions for a nonlinear wave equation
-
J. Pöschel 1996 Quasi-periodic solutions for a nonlinear wave equation Comment. Math. Helv. 71 2 269 296 (Pubitemid 126311330)
-
(1996)
Commentarii Mathematici Helvetici
, vol.71
, Issue.2
, pp. 269-296
-
-
Poschel, J.1
-
31
-
-
0036801143
-
On the construction of almost periodic solutions for a nonlinear Schrödinger equation
-
J. Pöschel 2002 On the construction of almost periodic solutions for a nonlinear Schrödinger equation Erg. Th. Dynam. Syst. 22 5 1537 1549
-
(2002)
Erg. Th. Dynam. Syst.
, vol.22
, Issue.5
, pp. 1537-1549
-
-
Pöschel, J.1
-
32
-
-
23844533735
-
Quasi-periodic solutions for completely resonant non-linear wave equations in ID and 2D
-
M. Procesi 2005 Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D Discrete Contin. Dyn. Syst. 13 3 541 552 (Pubitemid 41179922)
-
(2005)
Discrete and Continuous Dynamical Systems
, vol.13
, Issue.3
, pp. 541-552
-
-
Procesi, M.1
-
33
-
-
0000595016
-
Iteration of analytic functions
-
C.L. Siegel 1942 Iteration of analytic functions Ann. of Math. 43 607 612
-
(1942)
Ann. of Math.
, vol.43
, pp. 607-612
-
-
Siegel, C.L.1
-
34
-
-
0033460613
-
Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations
-
A. Soffer M.I. Weinstein 1999 Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations Invent. Math. 136 9 74
-
(1999)
Invent. Math.
, vol.136
, pp. 9-74
-
-
Soffer, A.1
Weinstein, M.I.2
-
35
-
-
0000502263
-
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory
-
C.E. Wayne 1990 Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory Commun. Math. Phys. 127 3 479 528
-
(1990)
Commun. Math. Phys.
, vol.127
, Issue.3
, pp. 479-528
-
-
Wayne, C.E.1
-
36
-
-
33748285996
-
Quasi-periodic solutions of completely resonant nonlinear wave equations
-
DOI 10.1016/j.jde.2005.12.012, PII S0022039605004456
-
X. Yuan 2006 Quasi-periodic solutions of completely resonant nonlinear wave equations J. Diff. Eqs. 230 1 213 274 (Pubitemid 44317580)
-
(2006)
Journal of Differential Equations
, vol.230
, Issue.1
, pp. 213-274
-
-
Yuan, X.1
|