-
1
-
-
0002764803
-
Proof of A. N. Kolmogorov's theorem on the preservation of quasi periodic motions under small perturbations of the Hamiltonian
-
1. Arnold, V. I.: Proof of A. N. Kolmogorov's theorem on the preservation of quasi periodic motions under small perturbations of the Hamiltonian. Usp. Math. USSR 18, 13-40 (1963)
-
(1963)
Usp. Math. USSR
, vol.18
, pp. 13-40
-
-
Arnold, V.I.1
-
2
-
-
0002356196
-
Small denominators and problems of stability of motions in classical and celestial mechanics
-
2. Arnol'd, V. I.: Small denominators and problems of stability of motions in classical and celestial mechanics. Russ. Math. Surv. 18 6, 85-191 (1963)
-
(1963)
Russ. Math. Surv.
, vol.186
, pp. 85-191
-
-
Arnol'd, V.I.1
-
3
-
-
84963026889
-
Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE
-
3. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. International Mathematics Research Notices, 1994, pp. 475-497
-
(1994)
International Mathematics Research Notices
, pp. 475-497
-
-
Bourgain, J.1
-
4
-
-
0002160026
-
Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
-
To appear
-
4. Bourgain, J.: Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. To appear
-
Ann. of Math.
-
-
Bourgain, J.1
-
7
-
-
84990576596
-
Newton's method and periodic solutions of nonlinear wave equations
-
7. Craig, W., and Wayne, C.E.: Newton's method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409-1498 (1993)
-
(1993)
Commun. Pure Appl. Math.
, vol.46
, pp. 1409-1498
-
-
Craig, W.1
Wayne, C.E.2
-
8
-
-
0000412297
-
Perturbations of stable invariant tori for Hamiltonian systems
-
8. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Sup. Pisa 15, 115-147 (1988)
-
(1988)
Ann. Sc. Norm. Sup. Pisa
, vol.15
, pp. 115-147
-
-
Eliasson, L.H.1
-
9
-
-
0000284780
-
Absence of diffusion in the Anderson tight binding model for large disorder or lower energy
-
9. Fröhlich, J., and Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or lower energy. Commun. Math. Phy. 88, 151-184 (1983)
-
(1983)
Commun. Math. Phy.
, vol.88
, pp. 151-184
-
-
Fröhlich, J.1
Spencer, T.2
-
10
-
-
0001836195
-
Nearly integrable infinite dimensional Hamiltonian systems
-
Berlin: Springer
-
10. Kuksin, S.B.: Nearly integrable infinite dimensional Hamiltonian systems. Lecture Notes in Mathematics, 1556, Berlin: Springer, 1993
-
(1993)
Lecture Notes in Mathematics
, vol.1556
-
-
Kuksin, S.B.1
-
11
-
-
0040157758
-
Invariant cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation
-
11. Kuksin, S.B., Pöschel, J.: Invariant cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. of Math. 142, 149-179 (1995)
-
(1995)
Ann. of Math.
, vol.142
, pp. 149-179
-
-
Kuksin, S.B.1
Pöschel, J.2
-
12
-
-
0004293156
-
-
New York and London: Academic Press LTD
-
12. Lancaster, P.: Theory of Matrices. New York and London: Academic Press LTD, 1969
-
(1969)
Theory of Matrices
-
-
Lancaster, P.1
-
13
-
-
0001020164
-
On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function
-
13. Melnikov, V.K.: On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function. Sov. Math. Doklady 6, 1592-1596 (1965)
-
(1965)
Sov. Math. Doklady
, vol.6
, pp. 1592-1596
-
-
Melnikov, V.K.1
-
14
-
-
3042570326
-
Convergent series expansions for quasiperiodic motions
-
14. Moser, J.: Convergent series expansions for quasiperiodic motions. Math. Ann. 169 (1), 136-176 (1967)
-
(1967)
Math. Ann.
, vol.169
, Issue.1
, pp. 136-176
-
-
Moser, J.1
-
15
-
-
0030443654
-
Quasi-periodic solutions for a nonlinear wave equation
-
15. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helvetici 71, 269-296 (1996)
-
(1996)
Comment. Math. Helvetici
, vol.71
, pp. 269-296
-
-
Pöschel, J.1
-
16
-
-
85129605434
-
A KAM-theorem for some nonlinear partial differential equations
-
16. Pöschel, J.: A KAM-Theorem for some Nonlinear Partial Differential Equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 119-148 (1996)
-
(1996)
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
, vol.23
, pp. 119-148
-
-
Pöschel, J.1
-
17
-
-
0000502263
-
Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory
-
17. Wayne, C.E.: Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479-528 (1990)
-
(1990)
Commun. Math. Phys.
, vol.127
, pp. 479-528
-
-
Wayne, C.E.1
-
18
-
-
77956456169
-
Analytical extension of differentiable functions defined on closed set
-
18. Whitney, H.: Analytical extension of differentiable functions defined on closed set. Trans. A. M. S. 36, 63-89 (1934)
-
(1934)
Trans. A. M. S.
, vol.36
, pp. 63-89
-
-
Whitney, H.1
-
19
-
-
0031285618
-
Invariant tori lor nearly integrable Hamiltonian systems with degeneracy
-
19. Xu, J., You, J., Qiu, Q.: Invariant tori lor nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375-387 (1997)
-
(1997)
Math. Z.
, vol.226
, pp. 375-387
-
-
Xu, J.1
You, J.2
Qiu, Q.3
-
20
-
-
0033540589
-
Perturbation of lower dimensional tori for Hamiltonian systems
-
20. You, J.: Perturbation of lower dimensional tori for Hamiltonian systems. J. Differ. Eqs. 152, 1-29 (1999)
-
(1999)
J. Differ. Eqs.
, vol.152
, pp. 1-29
-
-
You, J.1
-
21
-
-
0032021298
-
A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems
-
21. You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems. Commun. Math. Phys. 192, 145-168 (1998)
-
(1998)
Commun. Math. Phys.
, vol.192
, pp. 145-168
-
-
You, J.1
|