메뉴 건너뛰기




Volumn 211, Issue 2, 2000, Pages 497-525

KAM tori for 1D nonlinear wave equations with periodic boundary conditions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034349017     PISSN: 00103616     EISSN: None     Source Type: Journal    
DOI: 10.1007/s002200050824     Document Type: Article
Times cited : (190)

References (21)
  • 1
    • 0002764803 scopus 로고
    • Proof of A. N. Kolmogorov's theorem on the preservation of quasi periodic motions under small perturbations of the Hamiltonian
    • 1. Arnold, V. I.: Proof of A. N. Kolmogorov's theorem on the preservation of quasi periodic motions under small perturbations of the Hamiltonian. Usp. Math. USSR 18, 13-40 (1963)
    • (1963) Usp. Math. USSR , vol.18 , pp. 13-40
    • Arnold, V.I.1
  • 2
    • 0002356196 scopus 로고
    • Small denominators and problems of stability of motions in classical and celestial mechanics
    • 2. Arnol'd, V. I.: Small denominators and problems of stability of motions in classical and celestial mechanics. Russ. Math. Surv. 18 6, 85-191 (1963)
    • (1963) Russ. Math. Surv. , vol.186 , pp. 85-191
    • Arnol'd, V.I.1
  • 3
    • 84963026889 scopus 로고
    • Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE
    • 3. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. International Mathematics Research Notices, 1994, pp. 475-497
    • (1994) International Mathematics Research Notices , pp. 475-497
    • Bourgain, J.1
  • 4
    • 0002160026 scopus 로고    scopus 로고
    • Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
    • To appear
    • 4. Bourgain, J.: Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. To appear
    • Ann. of Math.
    • Bourgain, J.1
  • 7
    • 84990576596 scopus 로고
    • Newton's method and periodic solutions of nonlinear wave equations
    • 7. Craig, W., and Wayne, C.E.: Newton's method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409-1498 (1993)
    • (1993) Commun. Pure Appl. Math. , vol.46 , pp. 1409-1498
    • Craig, W.1    Wayne, C.E.2
  • 8
    • 0000412297 scopus 로고
    • Perturbations of stable invariant tori for Hamiltonian systems
    • 8. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Sup. Pisa 15, 115-147 (1988)
    • (1988) Ann. Sc. Norm. Sup. Pisa , vol.15 , pp. 115-147
    • Eliasson, L.H.1
  • 9
    • 0000284780 scopus 로고
    • Absence of diffusion in the Anderson tight binding model for large disorder or lower energy
    • 9. Fröhlich, J., and Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or lower energy. Commun. Math. Phy. 88, 151-184 (1983)
    • (1983) Commun. Math. Phy. , vol.88 , pp. 151-184
    • Fröhlich, J.1    Spencer, T.2
  • 10
    • 0001836195 scopus 로고
    • Nearly integrable infinite dimensional Hamiltonian systems
    • Berlin: Springer
    • 10. Kuksin, S.B.: Nearly integrable infinite dimensional Hamiltonian systems. Lecture Notes in Mathematics, 1556, Berlin: Springer, 1993
    • (1993) Lecture Notes in Mathematics , vol.1556
    • Kuksin, S.B.1
  • 11
    • 0040157758 scopus 로고
    • Invariant cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation
    • 11. Kuksin, S.B., Pöschel, J.: Invariant cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. of Math. 142, 149-179 (1995)
    • (1995) Ann. of Math. , vol.142 , pp. 149-179
    • Kuksin, S.B.1    Pöschel, J.2
  • 12
    • 0004293156 scopus 로고
    • New York and London: Academic Press LTD
    • 12. Lancaster, P.: Theory of Matrices. New York and London: Academic Press LTD, 1969
    • (1969) Theory of Matrices
    • Lancaster, P.1
  • 13
    • 0001020164 scopus 로고
    • On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function
    • 13. Melnikov, V.K.: On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function. Sov. Math. Doklady 6, 1592-1596 (1965)
    • (1965) Sov. Math. Doklady , vol.6 , pp. 1592-1596
    • Melnikov, V.K.1
  • 14
    • 3042570326 scopus 로고
    • Convergent series expansions for quasiperiodic motions
    • 14. Moser, J.: Convergent series expansions for quasiperiodic motions. Math. Ann. 169 (1), 136-176 (1967)
    • (1967) Math. Ann. , vol.169 , Issue.1 , pp. 136-176
    • Moser, J.1
  • 15
    • 0030443654 scopus 로고    scopus 로고
    • Quasi-periodic solutions for a nonlinear wave equation
    • 15. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helvetici 71, 269-296 (1996)
    • (1996) Comment. Math. Helvetici , vol.71 , pp. 269-296
    • Pöschel, J.1
  • 16
    • 85129605434 scopus 로고    scopus 로고
    • A KAM-theorem for some nonlinear partial differential equations
    • 16. Pöschel, J.: A KAM-Theorem for some Nonlinear Partial Differential Equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 119-148 (1996)
    • (1996) Ann. Scuola Norm. Sup. Pisa Cl. Sci. , vol.23 , pp. 119-148
    • Pöschel, J.1
  • 17
    • 0000502263 scopus 로고
    • Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory
    • 17. Wayne, C.E.: Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479-528 (1990)
    • (1990) Commun. Math. Phys. , vol.127 , pp. 479-528
    • Wayne, C.E.1
  • 18
    • 77956456169 scopus 로고
    • Analytical extension of differentiable functions defined on closed set
    • 18. Whitney, H.: Analytical extension of differentiable functions defined on closed set. Trans. A. M. S. 36, 63-89 (1934)
    • (1934) Trans. A. M. S. , vol.36 , pp. 63-89
    • Whitney, H.1
  • 19
    • 0031285618 scopus 로고    scopus 로고
    • Invariant tori lor nearly integrable Hamiltonian systems with degeneracy
    • 19. Xu, J., You, J., Qiu, Q.: Invariant tori lor nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375-387 (1997)
    • (1997) Math. Z. , vol.226 , pp. 375-387
    • Xu, J.1    You, J.2    Qiu, Q.3
  • 20
    • 0033540589 scopus 로고    scopus 로고
    • Perturbation of lower dimensional tori for Hamiltonian systems
    • 20. You, J.: Perturbation of lower dimensional tori for Hamiltonian systems. J. Differ. Eqs. 152, 1-29 (1999)
    • (1999) J. Differ. Eqs. , vol.152 , pp. 1-29
    • You, J.1
  • 21
    • 0032021298 scopus 로고    scopus 로고
    • A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems
    • 21. You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems. Commun. Math. Phys. 192, 145-168 (1998)
    • (1998) Commun. Math. Phys. , vol.192 , pp. 145-168
    • You, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.