-
1
-
-
17944387090
-
Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations
-
B
-
[B] J. Bourgain. Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6 (1996), 201-230.
-
(1996)
Geom. Funct. Anal.
, vol.6
, pp. 201-230
-
-
Bourgain, J.1
-
2
-
-
0011140493
-
Maximal almost-periodic solutions for Langrangian equations on infinite dimensional tori
-
GP. Eds. S. Kuksin, V. Lazutkin and J. Pöschel. Birkhäuser, Basel
-
[GP] L. Chierchia and P. Perfetti. Maximal almost-periodic solutions for Langrangian equations on infinite dimensional tori. Seminar on Dynamical Systems. Eds. S. Kuksin, V. Lazutkin and J. Pöschel. Birkhäuser, Basel, 1994, pp. 203-212.
-
(1994)
Seminar on Dynamical Systems
, pp. 203-212
-
-
Chierchia, L.1
Perfetti, P.2
-
3
-
-
84990576596
-
Newton's method and periodic solutions of nonlinear wave equations
-
CW
-
[CW] W. Craig and E. Wayne. Newton's method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46 (1993), 1405-1498.
-
(1993)
Commun. Pure Appl. Math.
, vol.46
, pp. 1405-1498
-
-
Craig, W.1
Wayne, E.2
-
5
-
-
0001836195
-
Nearly integrable infinite-dimensional hamiltonian systems
-
K1. Springer, Berlin
-
[K1] S.B. Kuksin. Nearly Integrable Infinite-Dimensional Hamiltonian Systems (Lecture Notes in Mathematics, 1556). Springer, Berlin, 1993.
-
(1993)
Lecture Notes in Mathematics
, vol.1556
-
-
Kuksin, S.B.1
-
7
-
-
0040157758
-
Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation
-
KP
-
[KP] S.B. Kuksin and J. Pöschel. Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143 (1996), 149-179.
-
(1996)
Ann. Math.
, vol.143
, pp. 149-179
-
-
Kuksin, S.B.1
Pöschel, J.2
-
8
-
-
0000135852
-
Small divisors with spatial structure in infinite dimensional Hamiltonian systems
-
P1
-
[P1] J. Pöschel. Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Commun. Math. Phys. 127 (1990), 351-393.
-
(1990)
Commun. Math. Phys.
, vol.127
, pp. 351-393
-
-
Pöschel, J.1
-
9
-
-
85129605434
-
A KAM theorem for some nonlinear partial differential equations
-
P2
-
[P2] J. Pöschel. 'A KAM theorem for some nonlinear partial differential equations. Ann. Sci. Norm. Sup. Pisa 23 (1996), 119-148.
-
(1996)
Ann. Sci. Norm. Sup. Pisa
, vol.23
, pp. 119-148
-
-
Pöschel, J.1
|