메뉴 건너뛰기




Volumn 30, Issue 8, 2009, Pages 2595-2605

Activated region fitting: A robust high-power method for fMRI analysis using parameterized regions of activation

Author keywords

Cluster size threshold; False discovery rate; Robust inference; Sandwich estimation; Spatial model; Voxel correlations

Indexed keywords

ARTICLE; BRAIN REGION; FUNCTIONAL MAGNETIC RESONANCE IMAGING; NORMAL DISTRIBUTION; PRIORITY JOURNAL; SIGNAL NOISE RATIO; SIMULATION; STATISTICAL MODEL;

EID: 67650500403     PISSN: 10659471     EISSN: None     Source Type: Journal    
DOI: 10.1002/hbm.20697     Document Type: Article
Times cited : (11)

References (34)
  • 1
    • 26644437226 scopus 로고    scopus 로고
    • Spatio-temporal modeling of localized brain activity
    • Bowman FD (2005): Spatio-temporal modeling of localized brain activity. Biostatistics 6:558-575.
    • (2005) Biostatistics , vol.6 , pp. 558-575
    • Bowman, F.D.1
  • 2
    • 35348856544 scopus 로고    scopus 로고
    • Neural correlates of verbal feedback processing: An fMRI study employing overt speech
    • Christoffels IK, Formisano E, Schiller NO (2007): Neural correlates of verbal feedback processing: An fMRI study employing overt speech. Hum Brain Mapp 28:868-879.
    • (2007) Hum Brain Mapp , vol.28 , pp. 868-879
    • Christoffels, I.K.1    Formisano, E.2    Schiller, N.O.3
  • 3
    • 84865285555 scopus 로고    scopus 로고
    • A reminder of the fallibility of the Wald statistic
    • Fears TR, Benichou J, Gail MH (1996): A reminder of the fallibility of the Wald statistic. Am Stat 50:225-226.
    • (1996) Am Stat , vol.50 , pp. 225-226
    • Fears, T.R.1    Benichou, J.2    Gail, M.H.3
  • 4
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • Flandin G, Penny W (2007): Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage 34:1108-1125.
    • (2007) Neuroimage , vol.34 , pp. 1108-1125
    • Flandin, G.1    Penny, W.2
  • 5
    • 0028946011 scopus 로고
    • Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold
    • Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintum MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn Reson Med 33:636-647.
    • (1995) Magn Reson Med , vol.33 , pp. 636-647
    • Forman, S.D.1    Cohen, J.D.2    Fitzgerald, M.3    Eddy, W.F.4    Mintum, M.A.5    Noll, D.C.6
  • 7
    • 0036334830 scopus 로고    scopus 로고
    • Thresholding of statistical maps in functional neuroimaging using the false discovery rate
    • Genovese CR, Lazar N, Nichols TE (2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870-878.
    • (2002) Neuroimage , vol.15 , pp. 870-878
    • Genovese, C.R.1    Lazar, N.2    Nichols, T.E.3
  • 8
    • 0035995079 scopus 로고    scopus 로고
    • A stochastic geometry model for functional magnetic resonance images
    • Hartvig NV (2002): A stochastic geometry model for functional magnetic resonance images. Scand J Stat 29:333-353.
    • (2002) Scand J Stat , vol.29 , pp. 333-353
    • Hartvig, N.V.1
  • 9
    • 0033647016 scopus 로고    scopus 로고
    • Spatial mixture modeling of fMRI data
    • Hartvig NV, Jensen JL (2000): Spatial mixture modeling of fMRI data. Hum Brain Mapp 11:233-248.
    • (2000) Hum Brain Mapp , vol.11 , pp. 233-248
    • Hartvig, N.V.1    Jensen, J.L.2
  • 10
    • 4344580309 scopus 로고    scopus 로고
    • Combining voxel intensity and cluster extent with permutation test framework
    • Hayasaka S, Nichols TE (2004): Combining voxel intensity and cluster extent with permutation test framework. Neuroimage 23:54-63.
    • (2004) Neuroimage , vol.23 , pp. 54-63
    • Hayasaka, S.1    Nichols, T.E.2
  • 11
    • 0033917623 scopus 로고    scopus 로고
    • Anatomically informed basis functions
    • Kiebel SJ, Goebel R, Friston KJ (2000): Anatomically informed basis functions. Neuroimage 11:656-667.
    • (2000) Neuroimage , vol.11 , pp. 656-667
    • Kiebel, S.J.1    Goebel, R.2    Friston, K.J.3
  • 12
    • 0034789167 scopus 로고    scopus 로고
    • Physiological noise in oxygenation-sensitive magnetic resonance imaging
    • Krueger G, Glover GH (2001): Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46: 631-637.
    • (2001) Magn Reson Med , vol.46 , pp. 631-637
    • Krueger, G.1    Glover, G.H.2
  • 16
    • 0242721216 scopus 로고    scopus 로고
    • Controlling the familywise error rate in functional neuroimaging: A comparative review
    • Nichols TE, Hayasaka S (2003): Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat Methods Med Res 12:419-446.
    • (2003) Stat Methods Med Res , vol.12 , pp. 419-446
    • Nichols, T.E.1    Hayasaka, S.2
  • 18
    • 0037603646 scopus 로고    scopus 로고
    • Mixtures of general linear models for functional neuroimaging
    • Penny W, Friston KJ (2003): Mixtures of general linear models for functional neuroimaging. IEEE Trans Med Imaging 22:504-514.
    • (2003) IEEE Trans Med Imaging , vol.22 , pp. 504-514
    • Penny, W.1    Friston, K.J.2
  • 19
    • 0031079260 scopus 로고    scopus 로고
    • Combining spatial extent and peak intensity to test for activations in functional imaging
    • Poline JB, Worsley KJ, Evans AC, Friston KJ (1997): Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage 5:83-96.
    • (1997) Neuroimage , vol.5 , pp. 83-96
    • Poline, J.B.1    Worsley, K.J.2    Evans, A.C.3    Friston, K.J.4
  • 20
    • 35748932852 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria. Available at
    • R Development Core Team (2007): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at www.R-project.org. ISBN 3-900051-07-0.
    • (2007) R: A language and environment for statistical computing
  • 21
    • 0022205528 scopus 로고
    • A modular system of algorithms for unconstrained minimization
    • Schnabel RB, Koontz JE, Weiss BE (1983): A modular system of algorithms for unconstrained minimization. ACM Trans Math Software 11:419-440.
    • (1983) ACM Trans Math Software , vol.11 , pp. 419-440
    • Schnabel, R.B.1    Koontz, J.E.2    Weiss, B.E.3
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978): Estimating the dimension of a model. Ann Stat 6:461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 25
    • 55149112384 scopus 로고    scopus 로고
    • Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localization in cluster inference
    • Smith SM, Nichols TE (2009): Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localization in cluster inference. Neuroimage 44:83-98.
    • (2009) Neuroimage , vol.44 , pp. 83-98
    • Smith, S.M.1    Nichols, T.E.2
  • 26
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
    • Thirion B, Flandin G, Pinel P, Roche A, Ciuciu P, Poline JB (2006): Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets. Hum Brain Mapp 27:678-693.
    • (2006) Hum Brain Mapp , vol.27 , pp. 678-693
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.B.6
  • 28
    • 27644466426 scopus 로고    scopus 로고
    • The Wald test and Cramer-Rao bound for misspecified models in electromagnetic source analysis
    • Waldorp LJ, Huizenga HM, Grasman RPPP (2005a) The Wald test and Cramer-Rao bound for misspecified models in electromagnetic source analysis. IEEE Trans Signal Process 53: 3427-3435.
    • (2005) IEEE Trans Signal Process , vol.53 , pp. 3427-3435
    • Waldorp, L.J.1    Huizenga, H.M.2    Grasman, R.P.P.P.3
  • 30
    • 0019220709 scopus 로고
    • Using least squares to approximate unknown regression functions
    • White H (1980): Using least squares to approximate unknown regression functions. Int Econ Rev 21:149-170.
    • (1980) Int Econ Rev , vol.21 , pp. 149-170
    • White, H.1
  • 31
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • White H (1982): Maximum likelihood estimation of misspecified models. Econometrica 50:1-25.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 33
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularisation for segmentation with an application to fMRI data
    • Woolrich MW, Behrens TEJ, Beckmann CF, Smith SM (2005): Mixture models with adaptive spatial regularisation for segmentation with an application to fMRI data. IEEE Trans Med Imaging 24:1-11.
    • (2005) IEEE Trans Med Imaging , vol.24 , pp. 1-11
    • Woolrich, M.W.1    Behrens, T.E.J.2    Beckmann, C.F.3    Smith, S.M.4
  • 34
    • 0029931242 scopus 로고    scopus 로고
    • A unified statistical approach for determining significant signals in images of cerebral activation
    • Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996): A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58-73.
    • (1996) Hum Brain Mapp , vol.4 , pp. 58-73
    • Worsley, K.J.1    Marrett, S.2    Neelin, P.3    Vandal, A.C.4    Friston, K.J.5    Evans, A.C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.