메뉴 건너뛰기




Volumn 48, Issue 3, 2009, Pages 229-235

Rule-based clustering for gene promoter structure discovery

Author keywords

Gene expression analysis; Machine learning; Promoter analysis; Rule based clustering

Indexed keywords

ALGORITHM; ARTICLE; GENE EXPRESSION; GENE EXPRESSION REGULATION; GENETICS; PROMOTER REGION; SACCHAROMYCES CEREVISIAE; VALIDATION STUDY;

EID: 67650486666     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.3414/ME9225     Document Type: Article
Times cited : (1)

References (19)
  • 1
    • 0035214185 scopus 로고    scopus 로고
    • Intelligent data analysis - Special issue
    • Bellazzi R, Zupan B. Intelligent data analysis - special issue. Methods Inf Med 2001; 40 (5): 362-364.
    • (2001) Methods Inf Med , vol.40 , Issue.5 , pp. 362-364
    • Bellazzi, R.1    Zupan, B.2
  • 3
    • 1842584947 scopus 로고    scopus 로고
    • Applied bioinformatics for the identification of regulatory elements
    • Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004; 5 (4): 276-287.
    • (2004) Nat Rev Genet , vol.5 , Issue.4 , pp. 276-287
    • Wasserman, W.W.1    Sandelin, A.2
  • 4
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell 2004; 117 (2): 185-198.
    • (2004) Cell , vol.117 , Issue.2 , pp. 185-198
    • Beer, M.A.1    Tavazoie, S.2
  • 5
    • 8344288229 scopus 로고    scopus 로고
    • Promoter prediction analysis on the whole human genome
    • Bajic VB, Tan SL, Suzuki Y, Sugano S. Promoter prediction analysis on the whole human genome. Nat Biotechnol 2004; 22 (11): 1467-1473.
    • (2004) Nat Biotechnol , vol.22 , Issue.11 , pp. 1467-1473
    • Bajic, V.B.1    Tan, S.L.2    Suzuki, Y.3    Sugano, S.4
  • 6
    • 0029960055 scopus 로고    scopus 로고
    • TRANSFAC: A database on transcription factors and their DNA binding sites
    • Wingender E, Dietze P, Karas H, Knuppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 1996; 24 (1): 238-241.
    • (1996) Nucleic Acids Res , vol.24 , Issue.1 , pp. 238-241
    • Wingender, E.1    Dietze, P.2    Karas, H.3    Knuppel, R.4
  • 7
    • 0028685490 scopus 로고
    • Fitting a mixture model by expectation maximization to discover motifs in biopolymers
    • Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994; 2: 28-36.
    • (1994) Proc Int Conf Intell Syst Mol Biol , vol.2 , pp. 28-36
    • Bailey, T.L.1    Elkan, C.2
  • 8
    • 21144439147 scopus 로고    scopus 로고
    • Assessing computational tools for the discovery of transcription factor binding sites
    • Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, et al. Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 2005; 23 (1): 137-144.
    • (2005) Nat Biotechnol , vol.23 , Issue.1 , pp. 137-144
    • Tompa, M.1    Li, N.2    Bailey, T.L.3    Church, G.M.4    De Moor, B.5    Eskin, E.6
  • 9
    • 33846510838 scopus 로고    scopus 로고
    • Largescale discovery of promoter motifs in Drosophila melanogaster
    • Down TA, Bergman CM, Su J, Hubbard TJ. Largescale discovery of promoter motifs in Drosophila melanogaster. PLoS Comput Biol 2007; 3 (1): e7.
    • (2007) PLoS Comput Biol , vol.3 , Issue.1
    • Down, T.A.1    Bergman, C.M.2    Su, J.3    Hubbard, T.J.4
  • 10
    • 33646825842 scopus 로고    scopus 로고
    • Estimating the number of clusters in DNA microarray data
    • Bolshakova N, Azuaje F. Estimating the number of clusters in DNA microarray data. Methods Inf Med 2006; 45 (2): 153-157.
    • (2006) Methods Inf Med , vol.45 , Issue.2 , pp. 153-157
    • Bolshakova, N.1    Azuaje, F.2
  • 11
    • 22944463621 scopus 로고    scopus 로고
    • Clustering algorithms and other exploratory methods for microarray data analysis
    • Rahnenfuhrer J. Clustering algorithms and other exploratory methods for microarray data analysis. Methods Inf Med 2005; 44 (3): 444-448.
    • (2005) Methods Inf Med , vol.44 , Issue.3 , pp. 444-448
    • Rahnenfuhrer, J.1
  • 12
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N. Revealing modular organization in the yeast transcriptional network. Nat Genet 2002; 31 (4): 370-377.
    • (2002) Nat Genet , vol.31 , Issue.4 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergmann, S.3    Sarig, O.4    Ziv, Y.5    Barkai, N.6
  • 13
    • 0035236830 scopus 로고    scopus 로고
    • Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles
    • Chiang DY, Brown PO, Eisen MB. Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics 2001; 17 (Suppl 1): S49-55.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Chiang, D.Y.1    Brown, P.O.2    Eisen, M.B.3
  • 14
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • Pilpel Y, Sudarsanam P, Church GM. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 2001; 29 (2): 153-159.
    • (2001) Nat Genet , vol.29 , Issue.2 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 15
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P, Nibblet T. The CN2 induction algorithm. Machine Learning 1989; 3 (4): 261-283.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Nibblet, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.