메뉴 건너뛰기




Volumn 44, Issue 3, 2005, Pages 444-448

Clustering algorithms and other exploratory methods for microarray data analysis

Author keywords

Assessment of cluster quality; Biclustering; Cluster algorithms; Unsupervised learning

Indexed keywords

ALGORITHM; ARTICLE; CLUSTER ANALYSIS; DATA ANALYSIS; DNA MICROARRAY; GENE EXPRESSION; PRIORITY JOURNAL;

EID: 22944463621     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.1055/s-0038-1633991     Document Type: Article
Times cited : (11)

References (17)
  • 2
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh AA, Eisen MB, Davis RE and 28 others. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503-11.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3
  • 4
    • 0038206898 scopus 로고    scopus 로고
    • Clustering-based approaches to discovering and visualising microarray data patterns
    • Azuaje F. Clustering-based approaches to discovering and visualising microarray data patterns. Brief Bioinformatics 2003; 4: 31-42.
    • (2003) Brief Bioinformatics , vol.4 , pp. 31-42
    • Azuaje, F.1
  • 5
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. PNAS 1998; 95: 14863-8.
    • (1998) PNAS , vol.95 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 6
    • 1642317557 scopus 로고    scopus 로고
    • Gene expression profile of adult T-cell acute lymphoblastic leukemia identifies distinct subsets of patients with different response to therapy and survival
    • Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R. Gene expression profile of adult T-cell acute lymphoblastic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2004; 103 (7): 2771-8.
    • (2004) Blood , vol.103 , Issue.7 , pp. 2771-2778
    • Chiaretti, S.1    Li, X.2    Gentleman, R.3    Vitale, A.4    Vignetti, M.5    Mandelli, F.6    Ritz, J.7    Foa, R.8
  • 7
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci 1999; 96: 2907-12.
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3    Zhu, Q.4    Kitareewan, S.5    Dmitrovsky, E.6    Lander, E.S.7    Golub, T.R.8
  • 11
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 2002; Suppl 1: 136-44.
    • (2002) Bioinformatics , Issue.SUPPL. 1 , pp. 136-144
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 14
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Yeung KY, Haynor DR, Ruzzo WL. Validating clustering for gene expression data. Bioinformatics 2001; 17: 309-18.
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 15
    • 84889866095 scopus 로고    scopus 로고
    • Efficient clustering methods for tumor classification with microarrays
    • Schader M, W. Gaul W, M. Vichi M (eds). Springer, Proc 26th Ann Conf GfKl
    • Rahnenführer J. Efficient clustering methods for tumor classification with microarrays. In: Between Data Science and Applied Data Analysis. Schader M, W. Gaul W, M. Vichi M (eds). Springer, Proc 26th Ann Conf GfKl 2002; 670-9.
    • (2002) Between Data Science and Applied Data Analysis , pp. 670-679
    • Rahnenführer, J.1
  • 16
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method to estimate the number of clusters in a dataset
    • RESEARCH0036
    • Dudoit S, Fridlyand J. A prediction-based resampling method to estimate the number of clusters in a dataset. Genome Biology 2002; 3: RESEARCH0036.
    • (2002) Genome Biology , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 17
    • 0642367624 scopus 로고    scopus 로고
    • Cluster stability scores for microarray data in cancer studies
    • Smolkin M, Ghosh D. Cluster stability scores for microarray data in cancer studies. BMC Bioinformatics 2003, 4: 36.
    • (2003) BMC Bioinformatics , vol.4 , pp. 36
    • Smolkin, M.1    Ghosh, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.