-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz E.N. Deterministic nonperiodic flow. J. Atmospheric Sci. 20 (1963) 130-141
-
(1963)
J. Atmospheric Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
0036686818
-
Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures
-
Aubin D., and Dahan Dalmedico A. Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures. Historia Math. 29 3 (2002) 273-339
-
(2002)
Historia Math.
, vol.29
, Issue.3
, pp. 273-339
-
-
Aubin, D.1
Dahan Dalmedico, A.2
-
3
-
-
33846058378
-
Global bifurcations of the Lorenz manifold
-
Doedel E.J., Krauskopf B., and Osinga H.M. Global bifurcations of the Lorenz manifold. Nonlinearity 19 12 (2006) 2947-2972
-
(2006)
Nonlinearity
, vol.19
, Issue.12
, pp. 2947-2972
-
-
Doedel, E.J.1
Krauskopf, B.2
Osinga, H.M.3
-
4
-
-
36749091733
-
Extended phase diagram of the Lorenz model
-
Dullin H.R., Schmidt S., Richter P.H., and Grossmann S.K. Extended phase diagram of the Lorenz model. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 9 (2007) 3013-3033
-
(2007)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.17
, Issue.9
, pp. 3013-3033
-
-
Dullin, H.R.1
Schmidt, S.2
Richter, P.H.3
Grossmann, S.K.4
-
5
-
-
0347187071
-
-
Springer-Verlag, New York
-
Guckenheimer J., and Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences vol. 42 (1990), Springer-Verlag, New York
-
(1990)
Applied Mathematical Sciences
, vol.42
-
-
Guckenheimer, J.1
Holmes, P.2
-
8
-
-
0002061016
-
A rigorous ODE solver and Smale's 14th problem
-
Tucker W. A rigorous ODE solver and Smale's 14th problem. Found. Comput. Math. 2 1 (2002) 53-117
-
(2002)
Found. Comput. Math.
, vol.2
, Issue.1
, pp. 53-117
-
-
Tucker, W.1
-
9
-
-
0034259697
-
What's new on Lorenz strange attractors?
-
Viana M. What's new on Lorenz strange attractors?. Math. Intelligencer 22 3 (2000) 6-19
-
(2000)
Math. Intelligencer
, vol.22
, Issue.3
, pp. 6-19
-
-
Viana, M.1
-
10
-
-
0000670926
-
Finite amplitude free convection as an initial value problem-1
-
Saltzman B. Finite amplitude free convection as an initial value problem-1. J. Atmospheric Sci. 19 (1962) 329-341
-
(1962)
J. Atmospheric Sci.
, vol.19
, pp. 329-341
-
-
Saltzman, B.1
-
11
-
-
34247637165
-
A three-parametric study of the Lorenz model
-
Barrio R., and Serrano S. A three-parametric study of the Lorenz model. Physica D 229 (2007) 43-51
-
(2007)
Physica D
, vol.229
, pp. 43-51
-
-
Barrio, R.1
Serrano, S.2
-
12
-
-
67650058397
-
Dangerous stability boundaries in the Lorenz model
-
Roschin M. Dangerous stability boundaries in the Lorenz model. Prikl. Mat. Mekh. 42 (1978) 950-952
-
(1978)
Prikl. Mat. Mekh.
, vol.42
, pp. 950-952
-
-
Roschin, M.1
-
13
-
-
0345573388
-
Analytical investigation of the Hopf bifurcation in the Lorenz model
-
Pade J., Rauh A., and Tsarouhas G. Analytical investigation of the Hopf bifurcation in the Lorenz model. Phys. Lett. A 115 3 (1986) 93-96
-
(1986)
Phys. Lett. A
, vol.115
, Issue.3
, pp. 93-96
-
-
Pade, J.1
Rauh, A.2
Tsarouhas, G.3
-
14
-
-
0002822757
-
Preturbulence: A regime observed in a fluid flow model of Lorenz
-
Kaplan J.L., and Yorke J.A. Preturbulence: A regime observed in a fluid flow model of Lorenz. Comm. Math. Phys. 67 2 (1979) 93-108
-
(1979)
Comm. Math. Phys.
, vol.67
, Issue.2
, pp. 93-108
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
15
-
-
0004032633
-
-
Springer-Verlag, New York
-
Sparrow C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Applied Mathematical Sciences vol. 41 (1982), Springer-Verlag, New York
-
(1982)
Applied Mathematical Sciences
, vol.41
-
-
Sparrow, C.1
-
18
-
-
0000119416
-
On structurally unstable attracting limit sets of Lorenz attractor type
-
Afraimovic V.S., Bykov V.V., and Shil'nikov L.P. On structurally unstable attracting limit sets of Lorenz attractor type. Trans. Moscow Math. Soc. 44 2 (1983) 153-216
-
(1983)
Trans. Moscow Math. Soc.
, vol.44
, Issue.2
, pp. 153-216
-
-
Afraimovic, V.S.1
Bykov, V.V.2
Shil'nikov, L.P.3
-
19
-
-
0041120265
-
On the boundaries of the domain of existence of the Lorenz attractor
-
Bykov V.V., and Shil'nikov A.L. On the boundaries of the domain of existence of the Lorenz attractor. Selecta Math. Soviet. 11 4 (1992) 375-382
-
(1992)
Selecta Math. Soviet.
, vol.11
, Issue.4
, pp. 375-382
-
-
Bykov, V.V.1
Shil'nikov, A.L.2
-
20
-
-
67650052980
-
-
World Scientific Publishing Co. Inc, River Edge, NJ
-
Shil'nikov L.P., Shil'nikov A.L., Turaev D., and Chua L.O. Methods of Qualitative Theory in Nonlinear Dynamics. Part II. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises vol. 5 (2001), World Scientific Publishing Co. Inc, River Edge, NJ
-
(2001)
World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises
, vol.5
-
-
Shil'nikov, L.P.1
Shil'nikov, A.L.2
Turaev, D.3
Chua, L.O.4
-
22
-
-
0345779413
-
Systematics of the Lorenz model at σ = 10
-
Alfsen K.H., and Frøyland J. Systematics of the Lorenz model at σ = 10. Phys. Scripta 31 1 (1985) 15-20
-
(1985)
Phys. Scripta
, vol.31
, Issue.1
, pp. 15-20
-
-
Alfsen, K.H.1
Frøyland, J.2
-
23
-
-
0008494528
-
Determining Lyapunov exponents from a time series
-
Wolf A., Swift J.B., Swinney H.L., and Vastano J.A. Determining Lyapunov exponents from a time series. Physica D 16 3 (1985) 285-317
-
(1985)
Physica D
, vol.16
, Issue.3
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
24
-
-
14944384236
-
Sensitivity tools vs. Poincaré sections
-
Barrio R. Sensitivity tools vs. Poincaré sections. Chaos Solitons Fractals 25 3 (2005) 711-726
-
(2005)
Chaos Solitons Fractals
, vol.25
, Issue.3
, pp. 711-726
-
-
Barrio, R.1
-
25
-
-
33845542060
-
Painting chaos: A gallery of sensitivity plots of classical problems
-
Barrio R. Painting chaos: A gallery of sensitivity plots of classical problems. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 10 (2006) 2777-2798
-
(2006)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.16
, Issue.10
, pp. 2777-2798
-
-
Barrio, R.1
-
27
-
-
4243055985
-
Estimating the bounds for the Lorenz family of chaotic systems
-
Li D., Lu J., Wu X., and Chen G. Estimating the bounds for the Lorenz family of chaotic systems. Chaos Solitons Fractals 23 2 (2005) 529-534
-
(2005)
Chaos Solitons Fractals
, vol.23
, Issue.2
, pp. 529-534
-
-
Li, D.1
Lu, J.2
Wu, X.3
Chen, G.4
-
29
-
-
0000356514
-
A proof that the Lorenz equations have a homoclinic orbit
-
Hastings S.P., and Troy W.C. A proof that the Lorenz equations have a homoclinic orbit. J. Differential Equations 113 1 (1994) 166-188
-
(1994)
J. Differential Equations
, vol.113
, Issue.1
, pp. 166-188
-
-
Hastings, S.P.1
Troy, W.C.2
-
30
-
-
0030540448
-
Lorenz equations. I. Existence and nonexistence of homoclinic orbits
-
Chen X. Lorenz equations. I. Existence and nonexistence of homoclinic orbits. SIAM J. Math. Anal. 27 4 (1996) 1057-1069
-
(1996)
SIAM J. Math. Anal.
, vol.27
, Issue.4
, pp. 1057-1069
-
-
Chen, X.1
-
31
-
-
84971128384
-
Some applications of Hausdorff dimension inequalities for ordinary differential equations
-
Smith R.A. Some applications of Hausdorff dimension inequalities for ordinary differential equations. Proc. Roy. Soc. Edinburgh Sect. A 104 3-4 (1986) 235-259
-
(1986)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.104
, Issue.3-4
, pp. 235-259
-
-
Smith, R.A.1
-
32
-
-
26844490163
-
Convergence to equilibria in the Lorenz system via monotone methods
-
Sanchez L.A. Convergence to equilibria in the Lorenz system via monotone methods. J. Differential Equations 217 2 (2005) 341-362
-
(2005)
J. Differential Equations
, vol.217
, Issue.2
, pp. 341-362
-
-
Sanchez, L.A.1
-
33
-
-
0035911773
-
Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions
-
Swinnerton-Dyer P. Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions. Phys. Lett. A 281 2-3 (2001) 161-167
-
(2001)
Phys. Lett. A
, vol.281
, Issue.2-3
, pp. 161-167
-
-
Swinnerton-Dyer, P.1
-
34
-
-
0000595586
-
The bifurcations of separatrix contours and chaos
-
Bykov V.V. The bifurcations of separatrix contours and chaos. Physica D 62 1-4 (1993) 290-299
-
(1993)
Physica D
, vol.62
, Issue.1-4
, pp. 290-299
-
-
Bykov, V.V.1
-
35
-
-
13544262350
-
Performance of the Taylor series method for ODEs/DAEs
-
Barrio R. Performance of the Taylor series method for ODEs/DAEs. Appl. Math. Comput. 163 2 (2005) 525-545
-
(2005)
Appl. Math. Comput.
, vol.163
, Issue.2
, pp. 525-545
-
-
Barrio, R.1
-
36
-
-
33751249935
-
Sensitivity analysis of ODE's/DAE's using the Taylor series method
-
Barrio R. Sensitivity analysis of ODE's/DAE's using the Taylor series method. SIAM J. Sci. Comput. 27 6 (2006) 1929-1947
-
(2006)
SIAM J. Sci. Comput.
, vol.27
, Issue.6
, pp. 1929-1947
-
-
Barrio, R.1
-
37
-
-
27544484059
-
VSVO formulation of the Taylor method for the numerical solution of ODEs
-
Barrio R., Blesa F., and Lara M. VSVO formulation of the Taylor method for the numerical solution of ODEs. Comput. Math. Appl. 50 1-2 (2005) 93-111
-
(2005)
Comput. Math. Appl.
, vol.50
, Issue.1-2
, pp. 93-111
-
-
Barrio, R.1
Blesa, F.2
Lara, M.3
-
38
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations 31 1 (1979) 53-98
-
(1979)
J. Differential Equations
, vol.31
, Issue.1
, pp. 53-98
-
-
Fenichel, N.1
-
40
-
-
21044434581
-
-
Springer, New York
-
Verhulst F. Methods and Applications of Singular Perturbations. Texts in Applied Mathematics vol. 50 (2005), Springer, New York
-
(2005)
Texts in Applied Mathematics
, vol.50
-
-
Verhulst, F.1
-
41
-
-
0001303058
-
Slow and fast invariant manifolds, and normal modes in a two degree-of-freedom structural dynamical system with multiple equilibrium states
-
Georgiou I.T., Bajaj A.K., and Corless M. Slow and fast invariant manifolds, and normal modes in a two degree-of-freedom structural dynamical system with multiple equilibrium states. Internat. J. Non-Linear Mech. 33 2 (1998) 275-300
-
(1998)
Internat. J. Non-Linear Mech.
, vol.33
, Issue.2
, pp. 275-300
-
-
Georgiou, I.T.1
Bajaj, A.K.2
Corless, M.3
-
42
-
-
3042631914
-
The forced van der Pol equation. I. The slow flow and its bifurcations
-
Guckenheimer J., Hoffman K., and Weckesser W. The forced van der Pol equation. I. The slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst. 2 1 (2003) 1-35
-
(2003)
SIAM J. Appl. Dyn. Syst.
, vol.2
, Issue.1
, pp. 1-35
-
-
Guckenheimer, J.1
Hoffman, K.2
Weckesser, W.3
-
43
-
-
84892340565
-
Periodic orbit continuation in multiple time scale systems
-
Numerical Continuation Methods for Dynamical Systems, Springer, Dordrecht
-
Guckenheimer J., and Drew LaMar M. Periodic orbit continuation in multiple time scale systems. Numerical Continuation Methods for Dynamical Systems. Underst. CompS. (2007), Springer, Dordrecht 253-267
-
(2007)
Underst. CompS.
, pp. 253-267
-
-
Guckenheimer, J.1
Drew LaMar, M.2
-
44
-
-
0036566135
-
Asymptotic analysis of two reduction methods for systems of chemical reactions
-
Kaper H.G., and Kaper T.J. Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165 1-2 (2002) 66-93
-
(2002)
Physica D
, vol.165
, Issue.1-2
, pp. 66-93
-
-
Kaper, H.G.1
Kaper, T.J.2
-
45
-
-
21044449042
-
Invariant manifolds in dissipative dynamical systems
-
Verhulst F. Invariant manifolds in dissipative dynamical systems. Acta Appl. Math. 87 1-3 (2005) 229-244
-
(2005)
Acta Appl. Math.
, vol.87
, Issue.1-3
, pp. 229-244
-
-
Verhulst, F.1
-
46
-
-
0018480597
-
Periodic solutions and bifurcation structure at high R in the Lorenz model
-
Robbins K.A. Periodic solutions and bifurcation structure at high R in the Lorenz model. SIAM J. Appl. Math. 36 3 (1979) 457-472
-
(1979)
SIAM J. Appl. Math.
, vol.36
, Issue.3
, pp. 457-472
-
-
Robbins, K.A.1
|