-
1
-
-
84971957489
-
Continuation and path following
-
Cambridge University Press, Cambridge
-
E. Allgower and K. Georg. Continuation and path following. Acta Numerica 1993, pages 1-64 (Cambridge University Press, Cambridge, 1993)
-
(1993)
Acta Numerica 1993
, pp. 1-64
-
-
Allgower, E.1
Georg, K.2
-
2
-
-
0001938848
-
Chasse au canard
-
E. Benoit, J. L. Callot, F. Diener, and M. Diener. Chasse au canard. Collect. Math. 32:37-119, 1981.
-
(1981)
Collect. Math.
, vol.32
, pp. 37-119
-
-
Benoit, E.1
Callot, J.L.2
Diener, F.3
Diener, M.4
-
3
-
-
3042629354
-
The forced van der Pol equation II: Canards in the reduced system
-
K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser. The forced van der Pol equation II: Canards in the reduced system. SIAM J. Appl. Dyn. Syst. 2:570-608, 2003.
-
(2003)
SIAM J. Appl. Dyn. Syst.
, vol.2
, pp. 570-608
-
-
Bold, K.1
Edwards, C.2
Guckenheimer, J.3
Guharay, S.4
Hoffman, K.5
Hubbard, J.6
Oliva, R.7
Weckesser, W.8
-
4
-
-
0011529714
-
On nonlinear differential equations of the second order: II the equation ÿ - kf (y, ẏ) ẏ + g (y, k) = p (t) = p1 (t) + kp2 (t), k> 0, f (y) ≥ 269-299
-
M. Cartwright and J. Littlewood On nonlinear differential equations of the second order: II the equation ÿ - kf (y, ẏ) ẏ + g (y, k) = p (t) = p1 (t) + kp2 (t), k> 0, f (y) ≥ 269-299 Ann. Math. 48:472-94, 1947.
-
(1947)
Ann. Math.
, vol.48
, pp. 472-494
-
-
Cartwright, M.1
Littlewood, J.2
-
5
-
-
0041716713
-
-
[Addendum 50:504-505, 1949]
-
(1949)
Addendum
, vol.50
, pp. 504-505
-
-
-
7
-
-
33646888362
-
Rigorous computational shadowing of orbits of ordinary differential equations
-
B. Coomes, H. Kocak, and K. Palmer. Rigorous computational shadowing of orbits of ordinary differential equations. Numer. Math. 69:401-421 1995.
-
(1995)
Numer. Math.
, vol.69
, pp. 401-421
-
-
Coomes, B.1
Kocak, H.2
Palmer, K.3
-
8
-
-
0038194270
-
-
E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, B. Sandstede, and X. J. Wang. Auto2000: Continuation and bifurcation software for ordinary differential equations. available via http://cmvl.cs.concordia.ca/.
-
Auto2000: Continuation and Bifurcation Software for Ordinary Differential Equations
-
-
Doedel, E.J.1
Paffenroth, R.C.2
Champneys, A.R.3
Fairgrieve, T.F.4
Kuznetsov, Yu.A.5
Oldeman, B.E.6
Sandstede, B.7
Wang, X.J.8
-
9
-
-
0039243335
-
Canard cycles and center manifolds. With an appendix by Cheng Zhi Li
-
F. Dumortier and R. Roussarie. Canard cycles and center manifolds. With an appendix by Cheng Zhi Li. Mem. Amer. Math. Soc. 121, no. 577, x+100 pp, 1996.
-
(1996)
Mem. Amer. Math. Soc.
, vol.121
, Issue.577
-
-
Dumortier, F.1
Roussarie, R.2
-
10
-
-
0003297685
-
Relaxation oscillations, including a standard chase on French ducks
-
Springer-Verlag
-
W. Eckhaus. Relaxation oscillations, including a standard chase on French ducks. Lecture Notes in Mathematics, Vol. 985, pages 449-494 (Springer-Verlag, 1983).
-
(1983)
Lecture Notes in Mathematics
, vol.985
, pp. 449-494
-
-
Eckhaus, W.1
-
11
-
-
34250627892
-
Geometric singular perturbation theory
-
N. Fenichel, Geometric singular perturbation theory. J. Diff Eq. 31:53-98, 1979
-
(1979)
J. Diff Eq.
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
12
-
-
84896853375
-
Bifurcation and degenerate decomposition in multiple time scale dynamical systems
-
J. Hogan, A. Champneys, B. Krauskopf, M. di Bernardo, E. Wilson, H. Osinga, and M. Homer, editors, Institute of Physics Publishing, Bristol
-
J. Guckenheimer. Bifurcation and degenerate decomposition in multiple time scale dynamical systems. In J. Hogan, A. Champneys, B. Krauskopf, M. di Bernardo, E. Wilson, H. Osinga, and M. Homer, editors, Nonlinear Dynamics and Chaos: where do we go from here?, pages 1-21 (Institute of Physics Publishing, Bristol, 2002).
-
(2002)
Nonlinear Dynamics and Chaos: Where Do We Go from Here?
, pp. 1-21
-
-
Guckenheimer, J.1
-
13
-
-
67349099196
-
Bifurcations of relaxation oscillations
-
NATO Sci. Ser. II Math. Phys. Chem., Kluwer Acad. Publ., Dordrecht
-
J. Guckenheimer. Bifurcations of relaxation oscillations. In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, pages 295-316, NATO Sci. Ser. II Math. Phys. Chem., Vol. 137 (Kluwer Acad. Publ., Dordrecht, 2004).
-
(2004)
Normal Forms, Bifurcations and Finiteness Problems in Differential Equations
, vol.137
, pp. 295-316
-
-
Guckenheimer, J.1
-
15
-
-
3042631914
-
The forced van der Pol equation I: The slow flow and its bifurcations
-
J. Guckenheimer, K. Hoffman, and W. Weckesser. The Forced van der Pol Equation I: The Slow Flow and its Bifurcations. SIAM J. App. Dyn. Sys. 2:1-35, 2003.
-
(2003)
SIAM J. App. Dyn. Sys.
, vol.2
, pp. 1-35
-
-
Guckenheimer, J.1
Hoffman, K.2
Weckesser, W.3
-
16
-
-
0034967327
-
Computing periodic orbits and their bifurcations with automatic differentiation
-
J. Guckenheimer and B. Meloon. Computing periodic orbits and their bifurcations with automatic differentiation. SIAM J. Sci. Comp., 22:951-985, 2000.
-
(2000)
SIAM J. Sci. Comp.
, vol.22
, pp. 951-985
-
-
Guckenheimer, J.1
Meloon, B.2
-
20
-
-
0002316532
-
Geometric singular perturbation theory
-
Lecture Notes in Mathathematics, Springerverlag
-
C. K. R. T. Jones. Geometric singular perturbation theory. In Dynamical Systems, Lecture Notes in Mathathematics, Vol 1609, pages 44-120 (Springerverlag, 1995).
-
(1995)
Dynamical Systems
, vol.1609
, pp. 44-120
-
-
Jones, C.K.R.T.1
-
21
-
-
0006073461
-
Perturbations of discontinuous solutions of non-linear systems of differential equations
-
N. Levinson. Perturbations of discontinuous solutions of non-linear systems of differential equations. Acta Math., 82:71-106, 1950.
-
(1950)
Acta Math.
, vol.82
, pp. 71-106
-
-
Levinson, N.1
-
22
-
-
34250577695
-
2) ẏ + y = bk cos (λt + α) for large k, and its generalizations
-
2) ẏ + y = bk cos (λt + α) for large k, and its generalizations. Acta Math., 97:267-308, 1957.
-
(1957)
Acta Math.
, vol.97
, pp. 267-308
-
-
Littlewood, J.1
-
23
-
-
34250610055
-
-
Errata
-
[Errata at Acta Math., 98:110, 1957]
-
(1957)
Acta Math.
, vol.98
, pp. 110
-
-
-
24
-
-
34250601358
-
On nonlinear differential equations of the second order. IV. The general equation ÿ - kf (y) ẏ + g (y) = bkp (φ), φ = t + α
-
J. Littlewood. On nonlinear differential equations of the second order. IV. The general equation ÿ - kf (y) ẏ + g (y) = bkp (φ), φ = t + α. Acta Math., 98:1-110, 1957.
-
(1957)
Acta Math.
, vol.98
, pp. 1-110
-
-
Littlewood, J.1
-
25
-
-
0003724619
-
-
Consultants Bureau, New York, A Division of Plenum Publishing Corporation
-
E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov and N. Kh. Rhozov. Asymptotic Methods in Singularly Perturbed Systems. Monographs in Contemporary Mathematics, (Consultants Bureau, New York, A Division of Plenum Publishing Corporation, 1994).
-
(1994)
Asymptotic Methods in Singularly Perturbed Systems. Monographs in Contemporary Mathematics
-
-
Mishchenko, E.F.1
Kolesov, Yu.S.2
Kolesov, A.Yu.3
Rhozov, N.Kh.4
-
26
-
-
0000050568
-
Numerical shadowing near hyperbolic trajectories
-
E. Van Vleck. Numerical shadowing near hyperbolic trajectories. SIAM J. Sci. Comput. 16:1177-1189, 1995.
-
(1995)
SIAM J. Sci. Comput.
, vol.16
, pp. 1177-1189
-
-
Van Vleck, E.1
-
27
-
-
0002486082
-
Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives
-
Russian
-
A. B. Vasil'eva. Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives. Russian Mathematical Surveys, 18:13-84, 1963. (Russian)
-
(1963)
Russian Mathematical Surveys
, vol.18
, pp. 13-84
-
-
Vasil'eva, A.B.1
-
28
-
-
84892265064
-
-
Uspehi Mat. Nauk, 18:15-86, 1963.
-
(1963)
Uspehi Mat. Nauk
, vol.18
, pp. 15-86
-
-
|