-
1
-
-
0037095592
-
Massera's theorem for monotone dynamical systems in three dimensions
-
J. Campos Massera's theorem for monotone dynamical systems in three dimensions J. Math. Anal. Appl. 269 2002 607-615
-
(2002)
J. Math. Anal. Appl.
, vol.269
, pp. 607-615
-
-
Campos, J.1
-
2
-
-
0030540448
-
Lorenz equations. I. Existence and nonexistence of homoclinic orbits
-
X. Chen Lorenz equations. I. Existence and nonexistence of homoclinic orbits SIAM J. Math. Anal. 27 1996 1057-1069
-
(1996)
SIAM J. Math. Anal.
, vol.27
, pp. 1057-1069
-
-
Chen, X.1
-
3
-
-
0011672661
-
Lorenz equations. II. Randomly rotated homoclinic orbits and chaotic trajectories
-
X. Chen Lorenz equations. II. Randomly rotated homoclinic orbits and chaotic trajectories Discrete Continuous Dynamical Systems 2 1996 121-140
-
(1996)
Discrete Continuous Dynamical Systems
, vol.2
, pp. 121-140
-
-
Chen, X.1
-
6
-
-
0042941238
-
Integrals of motion and the shape of the attractor for the Lorenz model
-
H. Giacomini S. Neukirch Integrals of motion and the shape of the attractor for the Lorenz model Phys. Lett. A 227 1997 309-318
-
(1997)
Phys. Lett. A
, vol.227
, pp. 309-318
-
-
Giacomini, H.1
Neukirch, S.2
-
9
-
-
0000356514
-
A proof that the Lorenz equations have a homoclinic orbit
-
S.P. Hastings W.C. Troy A proof that the Lorenz equations have a homoclinic orbit J. Differential Equations 113 1994 166-188
-
(1994)
J. Differential Equations
, vol.113
, pp. 166-188
-
-
Hastings, S.P.1
Troy, W.C.2
-
10
-
-
0000885375
-
Systems of differential equations which are competitive or cooperative I: Limit sets
-
M.W. Hirsch Systems of differential equations which are competitive or cooperative I Limit sets SIAM J. Appl. Math. 13 1982 167-179
-
(1982)
SIAM J. Appl. Math.
, vol.13
, pp. 167-179
-
-
Hirsch, M.W.1
-
12
-
-
0000241853
-
Deterministic non-periodic flows
-
E.N. Lorenz Deterministic non-periodic flows J. Atmos. Sci. 20 1963 130-141
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
13
-
-
0002403778
-
Chaos in the Lorenz equations: A computer-assisted proof
-
K. Mischaikow M. Mrozek Chaos in the Lorenz equations a computer-assisted proof Bull. Amer. Math. Soc. 32 1995 66-72
-
(1995)
Bull. Amer. Math. Soc.
, vol.32
, pp. 66-72
-
-
Mischaikow, K.1
Mrozek, M.2
-
15
-
-
0036334349
-
An application of the theory of monotone systems to an electrical circuit
-
L.A. Sanchez An application of the theory of monotone systems to an electrical circuit Proc. Roy. Soc. Edinburgh 132A 2002 711-728
-
(2002)
Proc. Roy. Soc. Edinburgh
, vol.132 A
, pp. 711-728
-
-
Sanchez, L.A.1
-
16
-
-
1842815853
-
Convergence in a Chua's system with three equilibria
-
L.A. Sanchez Convergence in a Chua's system with three equilibria Z. Angew. Math. Phys. 55 2004 183-200
-
(2004)
Z. Angew. Math. Phys.
, vol.55
, pp. 183-200
-
-
Sanchez, L.A.1
-
17
-
-
84971128384
-
Some applications of Hausdorff dimensions inequalities for ordinary differential equations
-
R.A. Smith Some applications of Hausdorff dimensions inequalities for ordinary differential equations Proc. Roy. Soc. Edinburgh 104A 1986 235-259
-
(1986)
Proc. Roy. Soc. Edinburgh
, vol.104 A
, pp. 235-259
-
-
Smith, R.A.1
-
18
-
-
0004068972
-
-
New York: Springer
-
C. Sparrow The Lorenz Equations Bifurcations, Chaos and Strange Attractors 1982 Springer New York
-
(1982)
The Lorenz Equations
-
-
Sparrow, C.1
-
19
-
-
0035911773
-
Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions
-
P. Swinnerton-Dyer Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions Phys. Lett. A 281 2001 161-167
-
(2001)
Phys. Lett. A
, vol.281
, pp. 161-167
-
-
Swinnerton-Dyer, P.1
|