메뉴 건너뛰기




Volumn 16, Issue 3, 2009, Pages 478-481

Support vector machine forecasting method improved by chaotic particle swarm optimization and its application

Author keywords

Chaotic searching; Particle swarm optimization (PSO); Short term load forecast; Support vector machine (SVM)

Indexed keywords

CHAOTIC SEARCHING; FORECAST ACCURACY; FORECASTING METHODS; FORECASTING MODELS; GLOBAL SEARCHING; IMPROVED PSO; KEY PARAMETERS; NEW MODEL; POWER MARKETS; SHORT TERM; SHORT TERM LOAD FORECAST; SIMULATION RESULT; SOUTH CHINA; SUPPORT VECTOR MACHINE (SVM); SVM MODEL; TIME COST;

EID: 67649999534     PISSN: 10059784     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11771-009-0080-9     Document Type: Article
Times cited : (19)

References (14)
  • 1
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • DOI 10.1016/j.enbuild.2004.09.009, PII S0378778804002981
    • D. Bing C. Cheng S. E. Lee 2005 Applying support vector machines to predict building energy consumption in tropical region [J] Energy and Buildings 37 5 545 553 (Pubitemid 40183476)
    • (2005) Energy and Buildings , vol.37 , Issue.5 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 4
    • 39449136177 scopus 로고    scopus 로고
    • Application of switched adaptive system to load forecasting [J]
    • A. M. Carlos M. G. Mateus 2008 Application of switched adaptive system to load forecasting [J] Electric Power Systems Research 78 4 721 727
    • (2008) Electric Power Systems Research , vol.78 , Issue.4 , pp. 721-727
    • Carlos, A.M.1    Mateus, M.G.2
  • 5
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms [J]
    • F. P. Ping C. H. Wei 2005 Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms [J] Electric Power Systems Research 74 3 417 425
    • (2005) Electric Power Systems Research , vol.74 , Issue.3 , pp. 417-425
    • Ping, F.P.1    Wei, C.H.2
  • 6
    • 0141678325 scopus 로고    scopus 로고
    • Study of support vector machines for short-term power load forecasting [J]
    • Y.-c. Li T.-j. Fang E.-keng. Yu 2003 Study of support vector machines for short-term power load forecasting [J] Proceeding of the CSEE 23 6 55 59
    • (2003) Proceeding of the CSEE , vol.23 , Issue.6 , pp. 55-59
    • Li, Y.-C.1    Fang, T.-J.2    Yu, E.-Keng.3
  • 7
    • 33846199647 scopus 로고    scopus 로고
    • New support vector machine optimized by improved particle swarm optimization and its application
    • DOI 10.1007/s11771-006-0089-2
    • X. Li S.-d. Yang J.-xun. Qi 2006 A new support vector machine optimized by improved particle swarm optimization and its application [J] Journal of Central South University of Technology 13 5 568 572 (Pubitemid 46090395)
    • (2006) Journal of Central South University of Technology (English Edition) , vol.13 , Issue.5 , pp. 568-572
    • Li, X.1    Yang, S.-D.2    Qi, J.-X.3
  • 8
    • 13844320123 scopus 로고    scopus 로고
    • Next day load curve forecasting using hybrid correction method
    • DOI 10.1109/TPWRS.2004.831256
    • T. Senjyu P. Mandal K. Uezato T. Funabashi 2005 Next day load curve forecasting using hybrid correction method [J] IEEE Transactions on Power Systems 20 1 102 109 (Pubitemid 40259426)
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.1 , pp. 102-109
    • Senjyu, T.1    Mandal, P.2    Uezato, K.3    Funabashi, T.4
  • 9
    • 51049116645 scopus 로고    scopus 로고
    • A new and improved version of particle swarm optimization algorithm with global-local best parameters [J]
    • M. Senthil Arumugam M. V. C. Rao A. Chandramohan 2008 A new and improved version of particle swarm optimization algorithm with global-local best parameters [J] Knowledge and Information Systems 16 3 331 357
    • (2008) Knowledge and Information Systems , vol.16 , Issue.3 , pp. 331-357
    • Senthil Arumugam, M.1    Rao, M.V.C.2    Chandramohan, A.3
  • 10
    • 33744741353 scopus 로고    scopus 로고
    • Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting [J]
    • G. C. Liao T. P. Tsao 2006 Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting [J] Evolutionary Computation 10 3 330 340
    • (2006) Evolutionary Computation , vol.10 , Issue.3 , pp. 330-340
    • Liao, G.C.1    Tsao, T.P.2
  • 12
    • 28044435860 scopus 로고    scopus 로고
    • Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems [J]
    • C. H. Ha W. Kuo 2006 Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems [J] European Journal of Operational Research 171 1 24 38
    • (2006) European Journal of Operational Research , vol.171 , Issue.1 , pp. 24-38
    • Ha, C.H.1    Kuo, W.2
  • 13
    • 4444372938 scopus 로고    scopus 로고
    • Research on application of the support vector machine in freight volume forecast [J]
    • C. Zhao K. Liu D. S. Li 2004 Research on application of the support vector machine in freight volume forecast [J] Journal of the China Railway Society 28 4 10 14
    • (2004) Journal of the China Railway Society , vol.28 , Issue.4 , pp. 10-14
    • Zhao, C.1    Liu, K.2    Li, D.S.3
  • 14
    • 33750625354 scopus 로고    scopus 로고
    • An effective co-evolutionary particle swarm optimization for constrained engineering design problems
    • DOI 10.1016/j.engappai.2006.03.003, PII S0952197606000686
    • Q. He L. Wang 2007 An effective co-evolutionary particle swarm optimization for constrained engineering design problems [J] Engineering Applications of Artificial Intelligence 20 1 89 99 (Pubitemid 44692464)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.1 , pp. 89-99
    • He, Q.1    Wang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.