-
4
-
-
0034163403
-
-
Nohira H., Mizuguchi K., Murata T., Yazaki Y., Kanazawa M., Aoki Y., and Nohira M. Heterocycles 52 (2000) 1359
-
(2000)
Heterocycles
, vol.52
, pp. 1359
-
-
Nohira, H.1
Mizuguchi, K.2
Murata, T.3
Yazaki, Y.4
Kanazawa, M.5
Aoki, Y.6
Nohira, M.7
-
6
-
-
0036377129
-
-
Wang S., Chen G., Kayser M.M., Iwaki H., Lau P.C.K., and Hasegawa Y. Can. J. Chem. 80 (2002) 613
-
(2002)
Can. J. Chem.
, vol.80
, pp. 613
-
-
Wang, S.1
Chen, G.2
Kayser, M.M.3
Iwaki, H.4
Lau, P.C.K.5
Hasegawa, Y.6
-
10
-
-
2942641357
-
-
Torii H., Nakadai M., Ishihara K., Saito S., and Yamamoto H. Angew. Chem., Int. Ed. 43 (2004) 1983
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 1983
-
-
Torii, H.1
Nakadai, M.2
Ishihara, K.3
Saito, S.4
Yamamoto, H.5
-
11
-
-
31444456557
-
-
Mase N., Nakai Y., Ohara N., Yoda H., Takabe K., Tanaka F., and Barbas III C.F. J. Am. Chem. Soc. 128 (2006) 734
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 734
-
-
Mase, N.1
Nakai, Y.2
Ohara, N.3
Yoda, H.4
Takabe, K.5
Tanaka, F.6
Barbas III, C.F.7
-
12
-
-
33646142092
-
-
Mase N., Watanabe K., Yoda H., Takabe K., Tanaka F., and Barbas III C.F. J. Am. Chem. Soc. 128 (2006) 4966
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 4966
-
-
Mase, N.1
Watanabe, K.2
Yoda, H.3
Takabe, K.4
Tanaka, F.5
Barbas III, C.F.6
-
13
-
-
2942641357
-
-
Catalyst 10:
-
Catalyst 10:. Torii H., Nakadai M., Ishihara K., Saito S., and Yamamoto H. Angew. Chem., Int. Ed. 43 (2004) 1983
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 1983
-
-
Torii, H.1
Nakadai, M.2
Ishihara, K.3
Saito, S.4
Yamamoto, H.5
-
14
-
-
11844253794
-
-
Cobb A.J.A., Shaw D.M., Longbottom D.A., Gold J.B., and Ley S.V. Org. Biomol. Chem. 3 (2005) 84
-
(2005)
Org. Biomol. Chem.
, vol.3
, pp. 84
-
-
Cobb, A.J.A.1
Shaw, D.M.2
Longbottom, D.A.3
Gold, J.B.4
Ley, S.V.5
-
16
-
-
11844253794
-
-
Catalyst 11:
-
Catalyst 11:. Cobb A.J.A., Shaw D.M., Longbottom D.A., Gold J.B., and Ley S.V. Org. Biomol. Chem. 3 (2005) 84
-
(2005)
Org. Biomol. Chem.
, vol.3
, pp. 84
-
-
Cobb, A.J.A.1
Shaw, D.M.2
Longbottom, D.A.3
Gold, J.B.4
Ley, S.V.5
-
17
-
-
41749109302
-
-
Bernard A.M., Frongia A., Piras P.P., Secci F., and Spiga M. Tetrahedron Lett. 49 (2008) 3037
-
(2008)
Tetrahedron Lett.
, vol.49
, pp. 3037
-
-
Bernard, A.M.1
Frongia, A.2
Piras, P.P.3
Secci, F.4
Spiga, M.5
-
18
-
-
32044463187
-
-
Hayashi Y., Sumiya T., Takahashi J., Gotoh H., Urushima T., and Shoji M. Angew. Chem., Int. Ed. 45 (2006) 958
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 958
-
-
Hayashi, Y.1
Sumiya, T.2
Takahashi, J.3
Gotoh, H.4
Urushima, T.5
Shoji, M.6
-
20
-
-
0035850820
-
-
Heine A., DeSantis G., Luz J.G., Mitchell M., Wong C.-H., and Wilson I.A. Science 294 (2001) 369-374
-
(2001)
Science
, vol.294
, pp. 369-374
-
-
Heine, A.1
DeSantis, G.2
Luz, J.G.3
Mitchell, M.4
Wong, C.-H.5
Wilson, I.A.6
-
23
-
-
23944447473
-
-
Córdova A., Zou W., Ibrahem I., Reyes E., Engqvist M., and Liao W.-W. Chem. Commun. (2005) 3586
-
(2005)
Chem. Commun.
, pp. 3586
-
-
Córdova, A.1
Zou, W.2
Ibrahem, I.3
Reyes, E.4
Engqvist, M.5
Liao, W.-W.6
-
24
-
-
67649674230
-
-
note
-
Typical procedure for Table 3, entry 1: To the solution of cyclopentanone (5, 463 μL, 5 mmol) in dichloromethane (1.0 mL) l-threonine (16, 36 mg, 0.3 mmol) was added. After stirring for 1 h at 25 °C, 37% aq formaldehyde solution (6, 75 μL, 1 mmol) was added. The reaction mixture was stirred for 48 h, then purified by flash silica gel column chromatography without further workup to provide aldol product (4a, 57 mg, 0.5 mmol, 50% yield).
-
-
-
-
25
-
-
67649667719
-
-
note
-
Reactions of cyclododecanone (12-membered) and/or cyclopentadecanone (15-membered) with aqueous formaldehyde in the presence of l-threonine resulted in no reaction.
-
-
-
-
26
-
-
85047680712
-
-
20 -14.1 (c 2.0, EtOH).
-
20 -14.1 (c 2.0, EtOH). Liu Z.-Y., Ji J.-X., and Li B.-G. J. Chem. Soc., Perkin Trans. 1 (2000) 3519
-
(2000)
J. Chem. Soc., Perkin Trans. 1
, pp. 3519
-
-
Liu, Z.-Y.1
Ji, J.-X.2
Li, B.-G.3
-
29
-
-
44949251617
-
-
It has long been thought that a secondary enamine is better stabilized by hyperconjugation, whereas a primary amine gives the predominant imine form. However, recent advance on organocatalysis using primary amine, effective tautomerization of the iminium form to the enamine form proceeded, to construct carbon-carbon bond between the enamine and an acceptor progressed in a stereoselective fashion. See:
-
It has long been thought that a secondary enamine is better stabilized by hyperconjugation, whereas a primary amine gives the predominant imine form. However, recent advance on organocatalysis using primary amine, effective tautomerization of the iminium form to the enamine form proceeded, to construct carbon-carbon bond between the enamine and an acceptor progressed in a stereoselective fashion. See:. Xu L.-W., and Lu Y. Org. Biomol. Chem. 6 (2008) 2047
-
(2008)
Org. Biomol. Chem.
, vol.6
, pp. 2047
-
-
Xu, L.-W.1
Lu, Y.2
-
30
-
-
0021062284
-
-
The δ-lactone (S)-3 is a highly versatile intermediate, for example, in Corey's synthesis of leukotriene B. See:
-
The δ-lactone (S)-3 is a highly versatile intermediate, for example, in Corey's synthesis of leukotriene B. See:. Corey E.J., Pyne S.G., and Su W.G. Tetrahedron Lett. 24 (1983) 4883
-
(1983)
Tetrahedron Lett.
, vol.24
, pp. 4883
-
-
Corey, E.J.1
Pyne, S.G.2
Su, W.G.3
|