메뉴 건너뛰기




Volumn , Issue , 2009, Pages 904-915

Similarity group-by

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION SCENARIO; EXECUTION TIME; GROUP-BY OPERATIONS; OPTIMIZATION TECHNIQUES; PERFORMANCE STUDY; POSTGRESQL; QUERY OPERATORS;

EID: 67649641445     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2009.113     Document Type: Conference Paper
Times cited : (25)

References (29)
  • 1
    • 0012906001 scopus 로고    scopus 로고
    • High Dimensional Similarity Joins: Algorithms and Performance Evaluation
    • N. Koudas and K. C. Sevcik, "High Dimensional Similarity Joins: Algorithms and Performance Evaluation," IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 1, pp. 3-18, 2000.
    • (2000) IEEE Transactions on Knowledge and Data Engineering , vol.12 , Issue.1 , pp. 3-18
    • Koudas, N.1    Sevcik, K.C.2
  • 2
    • 0032089982 scopus 로고    scopus 로고
    • Incremental distance join algorithms for spatial databases
    • G. Hjaltason and H. Samet, "Incremental distance join algorithms for spatial databases," SIGMOD Record, vol. 27, no. 2, pp. 237-248, 1998.
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 237-248
    • Hjaltason, G.1    Samet, H.2
  • 3
    • 31644437209 scopus 로고    scopus 로고
    • The k-Nearest Neighbour Join: Turbo charging the KDD process
    • C. Böhm and F. Krebs, "The k-Nearest Neighbour Join: Turbo charging the KDD process," Knowledge and Information Systems, vol. 6, no. 6, pp. 728-749, 2004.
    • (2004) Knowledge and Information Systems , vol.6 , Issue.6 , pp. 728-749
    • Böhm, C.1    Krebs, F.2
  • 4
    • 84882366774 scopus 로고    scopus 로고
    • High performance clustering based on the similarity join
    • C. Böhm, B. Braunmüller, M. Breunig, and H. Kriegel, "High performance clustering based on the similarity join," in Proc. 9th CIKM, 2000, pp. 298-305.
    • (2000) Proc. 9th CIKM , pp. 298-305
    • Böhm, C.1    Braunmüller, B.2    Breunig, M.3    Kriegel, H.4
  • 5
    • 33846555533 scopus 로고    scopus 로고
    • Efficient index-based KNN join processing for high-dimensional data
    • C. Yu, B. Cui, S. Wang, and J. Su, "Efficient index-based KNN join processing for high-dimensional data," Information and Software Technology, vol. 49, no. 4, pp. 332-344, 2007.
    • (2007) Information and Software Technology , vol.49 , Issue.4 , pp. 332-344
    • Yu, C.1    Cui, B.2    Wang, S.3    Su, J.4
  • 6
    • 33645954441 scopus 로고    scopus 로고
    • GORDER: An Efficient method for KNN join processing
    • C. Xia, H. Lu, B. Chin, and O. Hu, "GORDER: An Efficient method for KNN join processing," in Proc. 30th VLDB, 2004, pp. 756-767.
    • (2004) Proc. 30th VLDB , pp. 756-767
    • Xia, C.1    Lu, H.2    Chin, B.3    Hu, O.4
  • 7
    • 0035007849 scopus 로고    scopus 로고
    • A cost model and index architecture for the similarity join
    • C. Böhm and H. Kriegel, "A cost model and index architecture for the similarity join," in Proc. 17th ICDE, 2001, pp. 411-420.
    • (2001) Proc. 17th ICDE , pp. 411-420
    • Böhm, C.1    Kriegel, H.2
  • 8
    • 84864835440 scopus 로고    scopus 로고
    • Optimal Dimension Order: A generic technique for the similarity join
    • C. Böhm, F. Krebs, and H. Kriegel, "Optimal Dimension Order: A generic technique for the similarity join," in Proc. 4th DaWaK, 2002, pp. 135-149.
    • (2002) Proc. 4th DaWaK , pp. 135-149
    • Böhm, C.1    Krebs, F.2    Kriegel, H.3
  • 10
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • A. Jain, M. Murty, and P. Flynn, "Data clustering: a review," ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.
    • (1999) ACM Computing Surveys , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.1    Murty, M.2    Flynn, P.3
  • 11
    • 8344232713 scopus 로고    scopus 로고
    • Survey of clustering data mining techniques
    • P. Berkhin, "Survey of clustering data mining techniques," Accrue Software, 2002.
    • (2002) Accrue Software
    • Berkhin, P.1
  • 12
    • 25144477650 scopus 로고    scopus 로고
    • On cluster validity and the information need of users
    • B. Stein, S. zu Eissen, and F. Wibrock, "On cluster validity and the information need of users," in Proc. 3rd AIA, 2003, pp. 216-221.
    • (2003) Proc. 3rd AIA , pp. 216-221
    • Stein, B.1    zu Eissen, S.2    Wibrock, F.3
  • 13
    • 0348096294 scopus 로고    scopus 로고
    • Clustering validity checking methods: Part II
    • M. Halkidi, Y. Batistakis, and M. Vazirgiannis, "Clustering validity checking methods: part II," SIGMOD Record, vol. 31, no. 3, pp. 19-27, 2002.
    • (2002) SIGMOD Record , vol.31 , Issue.3 , pp. 19-27
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 15
    • 0002679222 scopus 로고    scopus 로고
    • Scalability for clustering algorithms revisited
    • F. Farnstrom, J. Lewis, and C. Elkan, "Scalability for clustering algorithms revisited," SIGKDD Explorations Newsletter, vol. 2, no. 1, pp. 51 -57, 2000.
    • (2000) SIGKDD Explorations Newsletter , vol.2 , Issue.1 , pp. 51-57
    • Farnstrom, F.1    Lewis, J.2    Elkan, C.3
  • 16
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim, "CURE: An efficient clustering algorithm for large databases," SIGMOD Record, vol. 27, no. 2, pp. 73-84, 1998.
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 17
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: An efficient data clustering method for very large databases," SIGMOD Record, vol. 25, no. 2, pp. 103-114, 1996.
    • (1996) SIGMOD Record , vol.25 , Issue.2 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 18
    • 67649643337 scopus 로고    scopus 로고
    • Cluster By: A new SQL extension for spatial data aggregation
    • C. Zhang and Y. Huang, "Cluster By: A new SQL extension for spatial data aggregation," in Proc. 15th GIS, 2007, pp. 1-4.
    • (2007) Proc. 15th GIS , pp. 1-4
    • Zhang, C.1    Huang, Y.2
  • 19
    • 0003142704 scopus 로고
    • Eager Aggregation and Lazy Aggregation
    • W. Yan and P. Larson, "Eager Aggregation and Lazy Aggregation," in Proc. 21th VLDB, 1995, pp. 345-357.
    • (1995) Proc. 21th VLDB , pp. 345-357
    • Yan, W.1    Larson, P.2
  • 20
    • 0036218908 scopus 로고    scopus 로고
    • Data reduction by partial preaggregation
    • P. Larson. "Data reduction by partial preaggregation," in Proc. 18th ICDE, 2002, pp. 706-715.
    • (2002) Proc. 18th ICDE , pp. 706-715
    • Larson, P.1
  • 21
    • 0034823620 scopus 로고    scopus 로고
    • Orthogonal optimization of subqueries and aggregation
    • C. Galindo-Legaria and M. Joshi, "Orthogonal optimization of subqueries and aggregation," SIGMOD Record, vol. 30, no. 2, pp. 571-581, 2001.
    • (2001) SIGMOD Record , vol.30 , Issue.2 , pp. 571-581
    • Galindo-Legaria, C.1    Joshi, M.2
  • 22
    • 0034829234 scopus 로고    scopus 로고
    • Optimizing queries using materialized views: A practical, scalable solution
    • J. Goldstein and P. Larson, "Optimizing queries using materialized views: a practical, scalable solution," SIGMOD Record, vol. 30, no. 2, pp. 331-342, 2001.
    • (2001) SIGMOD Record , vol.30 , Issue.2 , pp. 331-342
    • Goldstein, J.1    Larson, P.2
  • 23
    • 33745247381 scopus 로고    scopus 로고
    • Rewriting Queries with Arbitrary Aggregation Functions Using Views
    • S. Cohen, W. Nutt, and Y. Sagiv, "Rewriting Queries with Arbitrary Aggregation Functions Using Views," ACM Transactions on Database Systems, vol. 31, no. 2, pp. 672-715, 2006.
    • (2006) ACM Transactions on Database Systems , vol.31 , Issue.2 , pp. 672-715
    • Cohen, S.1    Nutt, W.2    Sagiv, Y.3
  • 24
    • 34250623331 scopus 로고    scopus 로고
    • User-defined aggregate functions: Bridging theory and practice
    • S. Cohen, "User-defined aggregate functions: bridging theory and practice," in Proc. SIGMOD, 2006, pp. 49-60.
    • (2006) Proc. SIGMOD , pp. 49-60
    • Cohen, S.1
  • 25
    • 67649653667 scopus 로고    scopus 로고
    • Extensible Grouping and Aggregation for Data Reconciliation
    • E. Schallehn, K. Sattler, and G. Saake, "Extensible Grouping and Aggregation for Data Reconciliation," in Proc. 4th EFIS, 2001, pp. 19-32.
    • (2001) Proc. 4th EFIS , pp. 19-32
    • Schallehn, E.1    Sattler, K.2    Saake, G.3
  • 26
    • 25144440735 scopus 로고    scopus 로고
    • Using similarity-based operations for resolving data-level conflicts
    • E. Schallehn and K. Sattler, "Using similarity-based operations for resolving data-level conflicts," in Proc. 20th BNCOD, 2003, pp. 172-189.
    • (2003) Proc. 20th BNCOD , pp. 172-189
    • Schallehn, E.1    Sattler, K.2
  • 27
    • 1142288181 scopus 로고    scopus 로고
    • Efficient similarity-based operations for data integration
    • E. Schallehn, K. Sattler, and G. Saake, "Efficient similarity-based operations for data integration," Data & Knowledge Engineering, vol. 48, no. 3, pp. 361-387, 2004.
    • (2004) Data & Knowledge Engineering , vol.48 , Issue.3 , pp. 361-387
    • Schallehn, E.1    Sattler, K.2    Saake, G.3
  • 28
    • 35448944026 scopus 로고    scopus 로고
    • Supporting ranking and clustering as generalized order-by and group-by, in Proc
    • C. Li, M. Wang, L. Lim, H. Wang, and K. C. Chang, "Supporting ranking and clustering as generalized order-by and group-by," in Proc. SIGMOD, 2007, pp. 127-138.
    • (2007) SIGMOD , pp. 127-138
    • Li, C.1    Wang, M.2    Lim, L.3    Wang, H.4    Chang, K.C.5
  • 29
    • 67649668515 scopus 로고    scopus 로고
    • TPC-H Version 2.6.1, Online, Available
    • TPC-H Version 2.6.1. [Online]. Available: http://www.tpc.org/tpch


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.