메뉴 건너뛰기




Volumn , Issue , 2007, Pages 127-138

Supporting ranking and clustering as generalized order-by and group-by

Author keywords

Clustering; Data exploration; Grouping; Query processing; Ranking; Retrieval; Top k

Indexed keywords

BOOLEAN SEMANTICS; CLUSTERRANK QUERY; DATA EXPLORATION; DATABASE QUERIES;

EID: 35448944026     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1247480.1247496     Document Type: Conference Paper
Times cited : (28)

References (31)
  • 2
    • 35448983053 scopus 로고    scopus 로고
    • P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA, 2002.
    • P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA, 2002.
  • 3
    • 0031166627 scopus 로고    scopus 로고
    • On saying "enough already!" in SQL
    • M. J. Carey and D. Kossmann. On saying "enough already!" in SQL. In SIGMOD, pages 219-230, 1997.
    • (1997) SIGMOD , pp. 219-230
    • Carey, M.J.1    Kossmann, D.2
  • 4
    • 3142727860 scopus 로고    scopus 로고
    • Automatic categorization of query results
    • K. Chakrabarti, S. Chaudhuri, and S. Hwang. Automatic categorization of query results. In SIGMOD, pages 755-766, 2004.
    • (2004) SIGMOD , pp. 755-766
    • Chakrabarti, K.1    Chaudhuri, S.2    Hwang, S.3
  • 5
    • 0347761808 scopus 로고    scopus 로고
    • An efficient bitmap encoding scheme for selection queries
    • C. Y Chan and Y. E. Ioannidis. An efficient bitmap encoding scheme for selection queries. In SIGMOD, 1999.
    • (1999) SIGMOD
    • Chan, C.Y.1    Ioannidis, Y.E.2
  • 6
    • 0007703927 scopus 로고    scopus 로고
    • Evaluating top-k selection queries
    • S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In VLDB, pages 397-410, 1999.
    • (1999) VLDB , pp. 397-410
    • Chaudhuri, S.1    Gravano, L.2
  • 7
    • 84858800944 scopus 로고    scopus 로고
    • Integrating DB and IR technologies: What is the sound of one hand clapping?
    • S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and IR technologies: What is the sound of one hand clapping? In CIDR, pages 1-12, 2005.
    • (2005) CIDR , pp. 1-12
    • Chaudhuri, S.1    Ramakrishnan, R.2    Weikum, G.3
  • 8
    • 3042782981 scopus 로고    scopus 로고
    • Probabilistic optimization of top n queries
    • D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of top n queries. In VLDB, 1999.
    • (1999) VLDB
    • Donjerkovic, D.1    Ramakrishnan, R.2
  • 9
    • 0034819889 scopus 로고    scopus 로고
    • Optimal aggregation algorithms for middleware
    • R. Fagin, A. Lote, and M. Naor. Optimal aggregation algorithms for middleware. In PODS, 2001.
    • (2001) PODS
    • Fagin, R.1    Lote, A.2    Naor, M.3
  • 11
    • 0002161594 scopus 로고    scopus 로고
    • CACTUS -clustering categorical data using summaries
    • V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS -clustering categorical data using summaries. In KDD, pages 73-83, 1999.
    • (1999) KDD , pp. 73-83
    • Ganti, V.1    Gehrke, J.2    Ramakrishnan, R.3
  • 12
    • 0034593048 scopus 로고    scopus 로고
    • Mining the stock market (extended abstract): Which measure is best?
    • M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Mining the stock market (extended abstract): which measure is best? In SIGKDD, pages 487-496, 2000.
    • (2000) SIGKDD , pp. 487-496
    • Gavrilov, M.1    Anguelov, D.2    Indyk, P.3    Motwani, R.4
  • 14
    • 0039561510 scopus 로고    scopus 로고
    • PREFER: A system for the efficient execution of multi-parametric ranked queries
    • V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A system for the efficient execution of multi-parametric ranked queries. SIGMOD, 2001.
    • (2001) SIGMOD
    • Hristidis, V.1    Koudas, N.2    Papakonstantinou, Y.3
  • 15
    • 85012120419 scopus 로고    scopus 로고
    • Supporting top-k join queries in relational databases
    • I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in relational databases. In VLDB, pages 754-765, 2003.
    • (2003) VLDB , pp. 754-765
    • Ilyas, I.F.1    Aref, W.G.2    Elmagarmid, A.K.3
  • 17
    • 26844486989 scopus 로고    scopus 로고
    • Weighted k-means for density-biased clustering
    • K. Kerdprasop, N. Kerdprasop, and P. Sattayatham. Weighted k-means for density-biased clustering. In DaWaK, pages 488-497, 2005.
    • (2005) DaWaK , pp. 488-497
    • Kerdprasop, K.1    Kerdprasop, N.2    Sattayatham, P.3
  • 18
    • 0002862737 scopus 로고    scopus 로고
    • Fast and effective text mining using linear-time document clustering
    • B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In SIGKDD, pages 16-22, 1999.
    • (1999) SIGKDD , pp. 16-22
    • Larsen, B.1    Aone, C.2
  • 19
    • 0010254378 scopus 로고    scopus 로고
    • Improving interactive retrieval by combining ranked lists and clustering
    • A. Leuski and J. Allan. Improving interactive retrieval by combining ranked lists and clustering. In RIAO, pages 665-681, 2000.
    • (2000) RIAO , pp. 665-681
    • Leuski, A.1    Allan, J.2
  • 20
    • 29844457931 scopus 로고    scopus 로고
    • RankSQL: Query algebra and optimization for relational top-k queries
    • C. Li, K. C.-C. Chang, I. F. Eyas, and S. Song. RankSQL: Query algebra and optimization for relational top-k queries. In SlGMOD, pages 131-142, 2005.
    • (2005) SlGMOD , pp. 131-142
    • Li, C.1    Chang, K.C.-C.2    Eyas, I.F.3    Song, S.4
  • 21
    • 34147150621 scopus 로고    scopus 로고
    • A generalized k-means algorithm with semi-supervised weight coefficients
    • F. Morii. A generalized k-means algorithm with semi-supervised weight coefficients. In ICPR, pages 198-201, 2006.
    • (2006) ICPR , pp. 198-201
    • Morii, F.1
  • 23
    • 84941188232 scopus 로고
    • Multi-table joins through bitmapped join indices
    • P. E. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD Record, 24(3):8-11, 1995.
    • (1995) SIGMOD Record , vol.24 , Issue.3 , pp. 8-11
    • O'Neil, P.E.1    Graefe, G.2
  • 24
    • 0031165870 scopus 로고    scopus 로고
    • Improved query performance with variant indexes
    • P. E. O'Neil and D. Quass. Improved query performance with variant indexes. In SlGMOD, pages 38-49, 1997.
    • (1997) SlGMOD , pp. 38-49
    • O'Neil, P.E.1    Quass, D.2
  • 25
    • 0003052359 scopus 로고    scopus 로고
    • WaveCluster: A multi-resolution clustering approach for very large spatial databases
    • G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. In VLDB, pages 428-439, 1998.
    • (1998) VLDB , pp. 428-439
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 26
    • 33847209590 scopus 로고    scopus 로고
    • Bitmap indexes for large scientific data sets: A case study
    • R. R. Sinha, S. Mitra, and M. Winslett. Bitmap indexes for large scientific data sets: A case study. In IPDPS, 2006.
    • (2006) IPDPS
    • Sinha, R.R.1    Mitra, S.2    Winslett, M.3
  • 27
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • W. Wang, J. Yang, and R. R. Muntz. STING: A statistical information grid approach to spatial data mining. In VLDB, pages 186-195, 1997.
    • (1997) VLDB , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.R.3
  • 28
    • 33745215599 scopus 로고    scopus 로고
    • Optimizing bitmap indices with efficient compression
    • K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient compression. ACM TODS, 31(1):1-38, 2006.
    • (2006) ACM TODS , vol.31 , Issue.1 , pp. 1-38
    • Wu, K.1    Otoo, E.2    Shoshani, A.3
  • 29
    • 0031648872 scopus 로고    scopus 로고
    • Encoded bitmap indexing for data warehouses
    • M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing for data warehouses. In ICDE, pages 220-230, 1998.
    • (1998) ICDE , pp. 220-230
    • Wu, M.-C.1    Buchmann, A.P.2
  • 31
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. In SIGMOD, pages 103-114, 1996.
    • (1996) SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.