-
1
-
-
85116351537
-
OPTICS: Ordering Points To Identify the Clustering Structure
-
Philadelphia, PA
-
Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.: ‘OPTICS: Ordering Points To Identify the Clustering Structure’, Proc. ACM SIGMOD’99 Int. Conf. on Management of Data, Philadelphia, PA, 1999, pp. 49-60.
-
(1999)
Proc. ACM SIGMOD’99 Int. Conf. on Management of Data
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.-P.3
Sander, J.4
-
2
-
-
0032090765
-
Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications
-
Seattle, WA
-
Agrawal R., Gehrke J., Gunopulos D., Raghavan P.: ‘Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications’, Proc. ACM SIGMOD’98 Int. Conf. on Management of Data, Seattle, WA, 1998, pp. 94-105.
-
(1998)
Proc. ACM SIGMOD’98 Int. Conf. on Management of Data
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
0027621699
-
Mining Association Rules between Sets of Items in Large Databases
-
Washington, D.C
-
Agrawal R., Imielinski T., Swami A.: ‘Mining Association Rules between Sets of Items in Large Databases’, Proc. ACM SIGMOD’93 Int. Conf. on Management of Data, Washington, D.C., 1993, pp. 207-216.
-
(1993)
Proc. ACM SIGMOD’93 Int. Conf. on Management of Data
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
4
-
-
0001802606
-
The X-Tree: An Index Structure for High-Dimensional Data
-
Bombay, India
-
Berchtold S., Keim D., Kriegel H.-P.: ‘The X-Tree: An Index Structure for High-Dimensional Data’, 22nd Int. Conf. on Very Large DataBases, 1996, Bombay, India, pp. 28-39.
-
(1996)
22nd Int. Conf. on Very Large DataBases
, pp. 28-39
-
-
Berchtold, S.1
Keim, D.2
Kriegel, H.-P.3
-
5
-
-
84994175813
-
A General Approach to Bulk Loading Multidimensional Index Structures
-
Athens, Greece
-
van den Bercken J., Seeger B., Widmayer P.:‘A General Approach to Bulk Loading Multidimensional Index Structures’, 23rd Conf. on Very Large Databases, 1997, Athens, Greece.
-
(1997)
23rd Conf. on Very Large Databases
-
-
van den Bercken, J.1
Seeger, B.2
Widmayer, P.3
-
7
-
-
85133833928
-
LOF: Identifying Density-Based Local Outliers
-
Dallas, TX
-
Breunig S., Kriegel H.-P., Ng R., Sander J.: ’LOF: Identifying Density-Based Local Outliers’, ACM SIGMOD Int. Conf. on Management of Data, Dallas, TX, 2000.
-
(2000)
ACM SIGMOD Int. Conf. on Management of Data
-
-
Breunig, S.1
Kriegel, H.-P.2
Ng, R.3
Sander, J.4
-
8
-
-
0027621672
-
Efficient Processing of Spatial Joins Using R-trees
-
Washington D.C
-
Brinkhoff T., Kriegel H.-P., Seeger B.: ‘Efficient Processing of Spatial Joins Using R-trees’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington D.C., 1993, pp. 237-246.
-
(1993)
Proc. ACM SIGMOD Int. Conf. on Management of Data
, pp. 237-246
-
-
Brinkhoff, T.1
Kriegel, H.-P.2
Seeger, B.3
-
9
-
-
0029752712
-
Parallel Processing of Spatial Joins Using R-trees
-
New Orleans, LA
-
Brinkhoff T., Kriegel H.-P., Seeger B.: ‘Parallel Processing of Spatial Joins Using R-trees’, Proc. 12th Int. Conf. on Data Engineering, New Orleans, LA, 1996.
-
(1996)
Proc. 12th Int. Conf. on Data Engineering
-
-
Brinkhoff, T.1
Kriegel, H.-P.2
Seeger, B.3
-
10
-
-
0025447750
-
The R*-tree: An Efficient and Robust Access Method for Points and Rectangles
-
Atlantic City, NJ
-
Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree: An Efficient and Robust Access Method for Points and Rectangles’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ, 1990, pp. 322-331.
-
(1990)
Proc. ACM SIGMOD Int. Conf. on Management of Data
, pp. 322-331
-
-
Beckmann, N.1
Kriegel, H.-P.2
Schneider, R.3
Seeger, B.4
-
11
-
-
85166331346
-
Algorithms for Characterization and Trend Detection in Spatial Databases
-
New York, NY
-
Ester M., Frommelt A., Kriegel H.-P., Sander J.: ‘Algorithms for Characterization and Trend Detection in Spatial Databases’, Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, 1998, pp. 44-50.
-
(1998)
Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining
, pp. 44-50
-
-
Ester, M.1
Frommelt, A.2
Kriegel, H.-P.3
Sander, J.4
-
12
-
-
0001899154
-
Incremental Clustering for Mining in a Data Warehousing Environment
-
New York, NY
-
Ester M., Kriegel H.-P., Sander J., Wimmer M. Xu X.: ‘Incremental Clustering for Mining in a Data Warehousing Environment’, Proc. 24th Int. Conf. on Very Large Databases, New York, NY, 1998, pp. 323-333.
-
(1998)
Proc. 24th Int. Conf. on Very Large Databases
, pp. 323-333
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Wimmer, M.4
Xu, X.5
-
13
-
-
85170282443
-
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
-
Portland, OR, AAAI Press
-
Ester M., Kriegel H.-P., Sander J., Xu X.: ‘A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise’, Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, 1996, pp. 226-231.
-
(1996)
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
14
-
-
84976803260
-
FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Data
-
San Jose, CA
-
Faloutsos C., Lin K.-I.: ‘FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Data’, Proc. ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA, 1995, pp. 163-174.
-
(1995)
Proc. ACM SIGMOD Int. Conf. on Management of Data
, pp. 163-174
-
-
Faloutsos, C.1
Lin, K.-I.2
-
15
-
-
0032083561
-
Multidimensional Access Methods
-
Gaede V., Günther O.:‘Multidimensional Access Methods’, ACM Computing Surveys, Vol. 30, No. 2, 1998, pp.170-231.
-
(1998)
ACM Computing Surveys
, vol.30
, Issue.2
, pp. 170-231
-
-
Gaede, V.1
Günther, O.2
-
16
-
-
0032091595
-
CURE: An Efficient Clustering Algorithms for Large Databases
-
Seattle, WA
-
Guha S., Rastogi R., Shim K.: ‘CURE: An Efficient Clustering Algorithms for Large Databases’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA, 1998, pp.73-84.
-
(1998)
Proc. ACM SIGMOD Int. Conf. on Management of Data
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
17
-
-
85031999247
-
R-trees: A Dynamic Index Structure for Spatial Searching
-
Boston, MA
-
Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searching’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston, MA, 1984, pp. 47-57.
-
(1984)
Proc. ACM SIGMOD Int. Conf. on Management of Data
, pp. 47-57
-
-
Guttman, A.1
-
18
-
-
84994130833
-
Spatial Joins Using R-trees: Breadth-First Traversal with Global Optimizations
-
Athens, Greece
-
Huang Y.-W., Jing N., Rundensteiner E. A.:‘Spatial Joins Using R-trees: Breadth-First Traversal with Global Optimizations’, Proc. Int. Conf. on Very Large Databases, Athens, Greece, 1997, pp. 396-405.
-
(1997)
Proc. Int. Conf. on Very Large Databases
, pp. 396-405
-
-
Huang, Y.-W.1
Jing, N.2
Rundensteiner, E.A.3
-
19
-
-
85140527321
-
An Efficient Approach to Clustering in Large Multimedia Databases with Noise
-
New York City, NY
-
Hinneburg A., Keim D.A.: ‘An Efficient Approach to Clustering in Large Multimedia Databases with Noise’, Proc. 4th Int. Conf. on Knowledge Discovery & Data Mining, New York City, NY, 1998, pp. 58-65.
-
(1998)
Proc. 4th Int. Conf. on Knowledge Discovery & Data Mining
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.A.2
-
20
-
-
0027595056
-
Effective algorithms for the nearest neighbor method in the clustering problem
-
Hattori K., Torii Y.:’Effective algorithms for the nearest neighbor method in the clustering problem’. Pattern Recognition, 1993, Vol. 26, No. 5, pp. 741-746.
-
(1993)
Pattern Recognition
, vol.26
, Issue.5
, pp. 741-746
-
-
Hattori, K.1
Torii, Y.2
-
25
-
-
84957645397
-
Discovery of Spatial Association Rules in Geographic Information Databases
-
Portland, ME
-
Koperski K., Han J.: ‘Discovery of Spatial Association Rules in Geographic Information Databases‘, Proc. 4th Int. Symp. on Large Spatial Databases, Portland, ME, 1995, pp. 47-66.
-
(1995)
Proc. 4th Int. Symp. on Large Spatial Databases
, pp. 47-66
-
-
Koperski, K.1
Han, J.2
-
26
-
-
0030383106
-
Finding Aggregate Proximity Relationships and Commonalities in Spatial Data Mining
-
Knorr E.M., Ng R.T.: ‘Finding Aggregate Proximity Relationships and Commonalities in Spatial Data Mining’, IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 6, 1996, pp. 884-897.
-
(1996)
IEEE Trans. on Knowledge and Data Engineering
, vol.8
, Issue.6
, pp. 884-897
-
-
Knorr, E.M.1
Ng, R.T.2
-
27
-
-
0002948319
-
Algorithms for Mining Distance-Based Outliers in Large Datasets
-
New York City, NY
-
Knorr E.M., Ng R.T.: ‘Algorithms for Mining Distance-Based Outliers in Large Datasets’, Proc. 24th Int. Conf. on Very Large DataBases, 1998, New York City, NY, pp. 392-403.
-
(1998)
Proc. 24th Int. Conf. on Very Large DataBases
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.T.2
-
30
-
-
0031701181
-
High Dimensional Similarity Joins: Algorithms and Performance Evaluation
-
Best Paper Award, Orlando, FL
-
Koudas N., Sevcik C.: ‘High Dimensional Similarity Joins: Algorithms and Performance Evaluation’, Proc. 14th Int. Conf on Data Engineering, Best Paper Award, Orlando, FL, 1998, pp. 466-475.
-
(1998)
Proc. 14th Int. Conf on Data Engineering
, pp. 466-475
-
-
Koudas, N.1
Sevcik, C.2
-
31
-
-
0032431773
-
Approximation-Based Similarity Search for 3-D Surface Segments
-
Kluwer Academic Publishers
-
Kriegel H.-P., Seidl T.: ‘Approximation-Based Similarity Search for 3-D Surface Segments’, GeoInformatica Journal, Kluwer Academic Publishers, 1998, Vol.2, No. 2, pp. 113-147.
-
(1998)
GeoInformatica Journal
, vol.2
, Issue.2
, pp. 113-147
-
-
Kriegel, H.-P.1
Seidl, T.2
-
32
-
-
0003134982
-
Fast Nearest Neighbor Search in Medical Image Databases
-
Mumbai, India
-
Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: ‘Fast Nearest Neighbor Search in Medical Image Databases’, Proc. 22nd Int. Conf. on Very Large DataBases, Mumbai, India, 1996, pp. 215-226.
-
(1996)
Proc. 22nd Int. Conf. on Very Large DataBases
, pp. 215-226
-
-
Korn, F.1
Sidiropoulos, N.2
Faloutsos, C.3
Siegel, E.4
Protopapas, Z.5
-
33
-
-
34249762939
-
The TV-Tree: An Index Structure for High-Dimensional Data
-
Lin K., Jagadish H. V., Faloutsos C.: ‘The TV-Tree: An Index Structure for High-Dimensional Data’, VLDB Journal, 1995, Vol. 3, pp. 517-542.
-
(1995)
VLDB Journal
, vol.3
, pp. 517-542
-
-
Lin, K.1
Jagadish, H.V.2
Faloutsos, C.3
-
36
-
-
0001457509
-
Some Methods for Classification and Analysis of Multivariate Observations
-
MacQueen, J.: ‘Some Methods for Classification and Analysis of Multivariate Observations’, 5th Berkeley Symp. Math. Statist. Prob., Vol. 1, pp. 281-297.
-
5th Berkeley Symp. Math. Statist. Prob.
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
38
-
-
0020848951
-
A Survey of Recent Advances in Hierarchical Clustering Algorithms
-
Murtagh F.: ‘A Survey of Recent Advances in Hierarchical Clustering Algorithms’, The Computer Journal Vol. 26, No. 4, 1983, pp.354-359.
-
(1983)
The Computer Journal
, vol.26
, Issue.4
, pp. 354-359
-
-
Murtagh, F.1
-
39
-
-
0003136237
-
Efficient and Effective Clustering Methods for Spatial Data Mining
-
Santiago de Chile, Chile
-
Ng R. T., Han J.: ‘Efficient and Effective Clustering Methods for Spatial Data Mining’, Proc. 20th Int. Conf. on Very Large DataBases, Santiago de Chile, Chile, 1994, pp. 144-155.
-
(1994)
Proc. 20th Int. Conf. on Very Large DataBases
, pp. 144-155
-
-
Ng, R.T.1
Han, J.2
-
43
-
-
85010847034
-
The K-D-B-tree: A Search Structure for Large Multidimensional Dynamic Indexes
-
Robinson J. T.: ‘The K-D-B-tree: A Search Structure for Large Multidimensional Dynamic Indexes’, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1981, pp. 10-18.
-
(1981)
Proc. ACM SIGMOD Int. Conf. on Management of Data
, pp. 10-18
-
-
Robinson, J.T.1
-
44
-
-
0000561280
-
The R+-Tree: A Dynamic Index for Multi-Dimensional Objects
-
Brighton
-
Sellis T., Roussopoulos N., Faloutsos C.: ‘The R+-Tree: A Dynamic Index for Multi-Dimensional Objects’, Proc. 13th Int. Conf. on Very Large Databases, Brighton, 1987, pp.507-518.
-
(1987)
Proc. 13th Int. Conf. on Very Large Databases
, pp. 507-518
-
-
Sellis, T.1
Roussopoulos, N.2
Faloutsos, C.3
-
45
-
-
0003052357
-
WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases
-
New York, NY
-
Sheikholeslami G., Chatterjee S., Zhang A.: ‘WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases’, Proc. Int. Conf. on Very Large DataBases, New York, NY, 1998, pp. 428 - 439.
-
(1998)
Proc. Int. Conf. on Very Large DataBases
, pp. 428-439
-
-
Sheikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
46
-
-
0002663098
-
SLINK: an optimally efficient algorithm for the single-link cluster method
-
Sibson R.: ‘SLINK: an optimally efficient algorithm for the single-link cluster method’, The Computer Journal Vol. 16, No. 1, 1973, pp.30-34.
-
(1973)
The Computer Journal
, vol.16
, Issue.1
, pp. 30-34
-
-
Sibson, R.1
-
47
-
-
0030643303
-
The -KDB tree: A Fast Index Structure for High-dimensional Similarity Joins
-
Shim K., Srikant R., Agrawal R.: ’The -KDB tree: A Fast Index Structure for High-dimensional Similarity Joins’, IEEE Int. Conf on Data Engineering, 1997, 301-311.
-
(1997)
IEEE Int. Conf on Data Engineering
, pp. 301-311
-
-
Shim, K.1
Srikant, R.2
Agrawal, R.3
|