메뉴 건너뛰기




Volumn 2000-January, Issue , 2000, Pages 298-305

High Performance Clustering Based on the Similarity Join

Author keywords

clustering; Data mining; database primitives; multidimensional index structure; similarity join

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; HIERARCHICAL SYSTEMS; NEAREST NEIGHBOR SEARCH; QUERY LANGUAGES; QUERY PROCESSING; TREES (MATHEMATICS);

EID: 84882366774     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/354756.354832     Document Type: Conference Paper
Times cited : (48)

References (48)
  • 13
    • 85170282443 scopus 로고    scopus 로고
    • A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
    • Portland, OR, AAAI Press
    • Ester M., Kriegel H.-P., Sander J., Xu X.: ‘A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise’, Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, 1996, pp. 226-231.
    • (1996) Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 14
    • 84976803260 scopus 로고
    • FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Data
    • San Jose, CA
    • Faloutsos C., Lin K.-I.: ‘FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Data’, Proc. ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA, 1995, pp. 163-174.
    • (1995) Proc. ACM SIGMOD Int. Conf. on Management of Data , pp. 163-174
    • Faloutsos, C.1    Lin, K.-I.2
  • 15
    • 0032083561 scopus 로고    scopus 로고
    • Multidimensional Access Methods
    • Gaede V., Günther O.:‘Multidimensional Access Methods’, ACM Computing Surveys, Vol. 30, No. 2, 1998, pp.170-231.
    • (1998) ACM Computing Surveys , vol.30 , Issue.2 , pp. 170-231
    • Gaede, V.1    Günther, O.2
  • 17
    • 85031999247 scopus 로고
    • R-trees: A Dynamic Index Structure for Spatial Searching
    • Boston, MA
    • Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searching’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston, MA, 1984, pp. 47-57.
    • (1984) Proc. ACM SIGMOD Int. Conf. on Management of Data , pp. 47-57
    • Guttman, A.1
  • 18
    • 84994130833 scopus 로고    scopus 로고
    • Spatial Joins Using R-trees: Breadth-First Traversal with Global Optimizations
    • Athens, Greece
    • Huang Y.-W., Jing N., Rundensteiner E. A.:‘Spatial Joins Using R-trees: Breadth-First Traversal with Global Optimizations’, Proc. Int. Conf. on Very Large Databases, Athens, Greece, 1997, pp. 396-405.
    • (1997) Proc. Int. Conf. on Very Large Databases , pp. 396-405
    • Huang, Y.-W.1    Jing, N.2    Rundensteiner, E.A.3
  • 19
    • 85140527321 scopus 로고    scopus 로고
    • An Efficient Approach to Clustering in Large Multimedia Databases with Noise
    • New York City, NY
    • Hinneburg A., Keim D.A.: ‘An Efficient Approach to Clustering in Large Multimedia Databases with Noise’, Proc. 4th Int. Conf. on Knowledge Discovery & Data Mining, New York City, NY, 1998, pp. 58-65.
    • (1998) Proc. 4th Int. Conf. on Knowledge Discovery & Data Mining , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 20
    • 0027595056 scopus 로고
    • Effective algorithms for the nearest neighbor method in the clustering problem
    • Hattori K., Torii Y.:’Effective algorithms for the nearest neighbor method in the clustering problem’. Pattern Recognition, 1993, Vol. 26, No. 5, pp. 741-746.
    • (1993) Pattern Recognition , vol.26 , Issue.5 , pp. 741-746
    • Hattori, K.1    Torii, Y.2
  • 25
    • 84957645397 scopus 로고
    • Discovery of Spatial Association Rules in Geographic Information Databases
    • Portland, ME
    • Koperski K., Han J.: ‘Discovery of Spatial Association Rules in Geographic Information Databases‘, Proc. 4th Int. Symp. on Large Spatial Databases, Portland, ME, 1995, pp. 47-66.
    • (1995) Proc. 4th Int. Symp. on Large Spatial Databases , pp. 47-66
    • Koperski, K.1    Han, J.2
  • 26
    • 0030383106 scopus 로고    scopus 로고
    • Finding Aggregate Proximity Relationships and Commonalities in Spatial Data Mining
    • Knorr E.M., Ng R.T.: ‘Finding Aggregate Proximity Relationships and Commonalities in Spatial Data Mining’, IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 6, 1996, pp. 884-897.
    • (1996) IEEE Trans. on Knowledge and Data Engineering , vol.8 , Issue.6 , pp. 884-897
    • Knorr, E.M.1    Ng, R.T.2
  • 27
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for Mining Distance-Based Outliers in Large Datasets
    • New York City, NY
    • Knorr E.M., Ng R.T.: ‘Algorithms for Mining Distance-Based Outliers in Large Datasets’, Proc. 24th Int. Conf. on Very Large DataBases, 1998, New York City, NY, pp. 392-403.
    • (1998) Proc. 24th Int. Conf. on Very Large DataBases , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 30
    • 0031701181 scopus 로고    scopus 로고
    • High Dimensional Similarity Joins: Algorithms and Performance Evaluation
    • Best Paper Award, Orlando, FL
    • Koudas N., Sevcik C.: ‘High Dimensional Similarity Joins: Algorithms and Performance Evaluation’, Proc. 14th Int. Conf on Data Engineering, Best Paper Award, Orlando, FL, 1998, pp. 466-475.
    • (1998) Proc. 14th Int. Conf on Data Engineering , pp. 466-475
    • Koudas, N.1    Sevcik, C.2
  • 31
    • 0032431773 scopus 로고    scopus 로고
    • Approximation-Based Similarity Search for 3-D Surface Segments
    • Kluwer Academic Publishers
    • Kriegel H.-P., Seidl T.: ‘Approximation-Based Similarity Search for 3-D Surface Segments’, GeoInformatica Journal, Kluwer Academic Publishers, 1998, Vol.2, No. 2, pp. 113-147.
    • (1998) GeoInformatica Journal , vol.2 , Issue.2 , pp. 113-147
    • Kriegel, H.-P.1    Seidl, T.2
  • 33
    • 34249762939 scopus 로고
    • The TV-Tree: An Index Structure for High-Dimensional Data
    • Lin K., Jagadish H. V., Faloutsos C.: ‘The TV-Tree: An Index Structure for High-Dimensional Data’, VLDB Journal, 1995, Vol. 3, pp. 517-542.
    • (1995) VLDB Journal , vol.3 , pp. 517-542
    • Lin, K.1    Jagadish, H.V.2    Faloutsos, C.3
  • 36
    • 0001457509 scopus 로고    scopus 로고
    • Some Methods for Classification and Analysis of Multivariate Observations
    • MacQueen, J.: ‘Some Methods for Classification and Analysis of Multivariate Observations’, 5th Berkeley Symp. Math. Statist. Prob., Vol. 1, pp. 281-297.
    • 5th Berkeley Symp. Math. Statist. Prob. , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 38
    • 0020848951 scopus 로고
    • A Survey of Recent Advances in Hierarchical Clustering Algorithms
    • Murtagh F.: ‘A Survey of Recent Advances in Hierarchical Clustering Algorithms’, The Computer Journal Vol. 26, No. 4, 1983, pp.354-359.
    • (1983) The Computer Journal , vol.26 , Issue.4 , pp. 354-359
    • Murtagh, F.1
  • 39
    • 0003136237 scopus 로고
    • Efficient and Effective Clustering Methods for Spatial Data Mining
    • Santiago de Chile, Chile
    • Ng R. T., Han J.: ‘Efficient and Effective Clustering Methods for Spatial Data Mining’, Proc. 20th Int. Conf. on Very Large DataBases, Santiago de Chile, Chile, 1994, pp. 144-155.
    • (1994) Proc. 20th Int. Conf. on Very Large DataBases , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 43
    • 85010847034 scopus 로고
    • The K-D-B-tree: A Search Structure for Large Multidimensional Dynamic Indexes
    • Robinson J. T.: ‘The K-D-B-tree: A Search Structure for Large Multidimensional Dynamic Indexes’, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1981, pp. 10-18.
    • (1981) Proc. ACM SIGMOD Int. Conf. on Management of Data , pp. 10-18
    • Robinson, J.T.1
  • 45
    • 0003052357 scopus 로고    scopus 로고
    • WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases
    • New York, NY
    • Sheikholeslami G., Chatterjee S., Zhang A.: ‘WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases’, Proc. Int. Conf. on Very Large DataBases, New York, NY, 1998, pp. 428 - 439.
    • (1998) Proc. Int. Conf. on Very Large DataBases , pp. 428-439
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 46
    • 0002663098 scopus 로고
    • SLINK: an optimally efficient algorithm for the single-link cluster method
    • Sibson R.: ‘SLINK: an optimally efficient algorithm for the single-link cluster method’, The Computer Journal Vol. 16, No. 1, 1973, pp.30-34.
    • (1973) The Computer Journal , vol.16 , Issue.1 , pp. 30-34
    • Sibson, R.1
  • 47
    • 0030643303 scopus 로고    scopus 로고
    • The -KDB tree: A Fast Index Structure for High-dimensional Similarity Joins
    • Shim K., Srikant R., Agrawal R.: ’The -KDB tree: A Fast Index Structure for High-dimensional Similarity Joins’, IEEE Int. Conf on Data Engineering, 1997, 301-311.
    • (1997) IEEE Int. Conf on Data Engineering , pp. 301-311
    • Shim, K.1    Srikant, R.2    Agrawal, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.