-
2
-
-
0000450702
-
A Fortran-90 based multiprecision system
-
D. BAILEY, A Fortran-90 based multiprecision system. ACM Trans. Math. Software. 21 (1995). pp. 379-387.
-
(1995)
ACM Trans. Math. Software
, vol.21
, pp. 379-387
-
-
BAILEY, D.1
-
3
-
-
84966237108
-
A Fortran Multiple-Precision Arithmetic Package
-
Technical report. Dept. of Computer Science. Australian National University. Canberra
-
R. BRENT, A Fortran Multiple-Precision Arithmetic Package. Technical report. Dept. of Computer Science. Australian National University. Canberra. 1975.
-
(1975)
-
-
BRENT, R.1
-
4
-
-
0031349268
-
Validated roundings of dot products by sticky accumulation
-
M. DAUMAS AND D. MATULA, Validated roundings of dot products by sticky accumulation. IEEE Trans. Comput., 46 (1997). pp. 623-629.
-
(1997)
IEEE Trans. Comput
, vol.46
, pp. 623-629
-
-
DAUMAS, M.1
MATULA, D.2
-
5
-
-
0000810983
-
A floating-point technique for extending the available precision
-
T. DEKKER, A floating-point technique for extending the available precision. Numer. Math., 18 (1971). pp. 224-242.
-
(1971)
Numer. Math
, vol.18
, pp. 224-242
-
-
DEKKER, T.1
-
6
-
-
34547422405
-
MPFR: A multiple- precision binary floating-point library with correct rounding
-
15 pages
-
L. FOUSSE, G. HANROT, V. LEFEVRE, P. PÉLISSIER, AND P. ZLMMERMANN, MPFR: A multiple- precision binary floating-point library with correct rounding. ACM Trans. Math. Software. 33 (2007). 15 pages.
-
(2007)
ACM Trans. Math. Software
, vol.33
-
-
FOUSSE, L.1
HANROT, G.2
LEFEVRE, V.3
PÉLISSIER, P.4
ZLMMERMANN, P.5
-
7
-
-
67649606115
-
-
GNU multiple precision arithmetic library (GMP). version 4.1.2., 2003. Code and documentation available at http://swox.com/gmp.
-
GNU multiple precision arithmetic library (GMP). version 4.1.2., 2003. Code and documentation available at http://swox.com/gmp.
-
-
-
-
10
-
-
67649612241
-
-
ANSI/IEEE 754-1985. Standard for binary floating-point arithmetic. 1985.
-
ANSI/IEEE 754-1985. Standard for binary floating-point arithmetic. 1985.
-
-
-
-
11
-
-
67649591325
-
-
D. KNUTH, The Art of Computer Programming: Seminumerical Algorithms. 2.Addison Wesley. Reading. MA. 1969.
-
D. KNUTH, The Art of Computer Programming: Seminumerical Algorithms. Vol. 2.Addison Wesley. Reading. MA. 1969.
-
-
-
-
12
-
-
55049095614
-
Arithmetic operations in interval spaces
-
U. KULISCH AND W. MIRANKER, Arithmetic operations in interval spaces. Comput., Suppl., 2 (1980). pp. 51-67.
-
(1980)
Comput., Suppl
, vol.2
, pp. 51-67
-
-
KULISCH, U.1
MIRANKER, W.2
-
13
-
-
85056337250
-
Solving Triangular Systems more Accurately and Efficiently
-
Technical Report RR2005-02. Laboratoire LP2A. Uni versity of Perpignan. 2005
-
P. LANGLOIS AND N. LOUVET, Solving Triangular Systems more Accurately and Efficiently. Technical Report RR2005-02. Laboratoire LP2A. Uni versity of Perpignan. 2005.
-
-
-
LANGLOIS, P.1
LOUVET, N.2
-
14
-
-
19044370033
-
Design. implementation and testing ofextended and mixed precision BLAS. AC M
-
X. LI, J. DEMMEL, D. BAILEY, G. HENRY, Y. HIDA, J. ISKANDAR, W. KAHAN, S. KANG, A. KAPUR, M. MARTIN, B. THOMPSON, T. TUNG. AN D D. YOO, Design. implementation and testing ofextended and mixed precision BLAS. AC M Trans. Math. Software. 28 (2002). pp. 152-205.
-
(2002)
Trans. Math. Software
, vol.28
, pp. 152-205
-
-
LI, X.1
DEMMEL, J.2
BAILEY, D.3
HENRY, G.4
HIDA, Y.5
ISKANDAR, J.6
KAHAN, W.7
KANG, S.8
KAPUR, A.9
MARTIN, M.10
THOMPSON, B.11
TUNG, T.12
YOO, D.13
-
15
-
-
67649591323
-
-
N. LOUVET, private communication. 2006.
-
N. LOUVET, private communication. 2006.
-
-
-
-
16
-
-
0015158598
-
On accurate floating-point summation
-
M. MALCOLM, On accurate floating-point summation. Comm. ACM. 14 (1971). pp. 731-736.
-
(1971)
Comm. ACM
, vol.14
, pp. 731-736
-
-
MALCOLM, M.1
-
19
-
-
0026169919
-
Algorithms for arbitrary precision floating point arithmetic
-
P. Kornerup and D. Matula. eds, IEEE Computer Society Press. Grenoble. France
-
D. PRIEST, Algorithms for arbitrary precision floating point arithmetic. in Proceedings of the 10th Symposium on Computer Arithmetic. P. Kornerup and D. Matula. eds., IEEE Computer Society Press. Grenoble. France. 1991. pp. 132- 145.
-
(1991)
Proceedings of the 10th Symposium on Computer Arithmetic
, pp. 132-145
-
-
PRIEST, D.1
-
22
-
-
55049129860
-
Accurate floating-point summation I: Faithful rounding
-
S. RUMP, T. OGITA, AND S. OISHI, Accurate floating-point summation I: Faithful rounding. SIAM J. Sci. Comput., 31 (2008). pp. 189-224.
-
(2008)
SIAM J. Sci. Comput
, vol.31
, pp. 189-224
-
-
RUMP, S.1
OGITA, T.2
OISHI, S.3
-
23
-
-
67649609461
-
Computing predecessor and successor in rounding to the nearest
-
submitted
-
S. M. RUMP, P. ZLMMERMANN. S. BOLDO, AND G. MELQUIOND, Computing predecessor and successor in rounding to the nearest. 2008. submitted.
-
(2008)
-
-
RUMP, S.M.1
ZLMMERMANN, P.2
BOLDO, S.3
MELQUIOND, G.4
-
24
-
-
0031518093
-
Adaptive precision floating-point arithmetic and fast robust geometric predicates
-
J. SHEWCHUK, Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput. Geom., 18 (1997). pp. 305-363.
-
(1997)
Discrete Comput. Geom
, vol.18
, pp. 305-363
-
-
SHEWCHUK, J.1
-
25
-
-
67649606341
-
Fast. guaranteed-accurate sums of many floating-point numbers
-
G. Hanrot and P. Zimmermann. eds
-
Y. ZHU AND W. HAYES, Fast. guaranteed-accurate sums of many floating-point numbers.in Proc. RNC7 Conference on Real Numbers and Computers. G. Hanrot and P. Zimmermann. eds., 2006. pp. 11-22.
-
(2006)
Proc. RNC7 Conference on Real Numbers and Computers
, pp. 11-22
-
-
ZHU, Y.1
HAYES, W.2
-
26
-
-
24644433724
-
A new distillation algorithm for floating-point summation
-
Y. ZHU, J. YONG, AND G. ZHENG, A new distillation algorithm for floating-point summation. SIAM J. Sci. Comput., 26 (2005). pp. 2066-2078.
-
(2005)
SIAM J. Sci. Comput
, vol.26
, pp. 2066-2078
-
-
ZHU, Y.1
YONG, J.2
ZHENG, G.3
-
27
-
-
67649609084
-
-
G. ZIELKE AND V. DRYGALLA, Genaue Losung linearer gleichungssysteme. GAMM Mitt. Ges. Angew. Math. Mech., (2003). pp. 7-108.
-
G. ZIELKE AND V. DRYGALLA, Genaue Losung linearer gleichungssysteme. GAMM Mitt. Ges. Angew. Math. Mech., (2003). pp. 7-108.
-
-
-
|