메뉴 건너뛰기




Volumn 9, Issue 6, 2009, Pages 4247-4270

Extended averaged learning subspace method for hyperspectral data classification

Author keywords

Averaged learning subspace method; Classification; Dimension reduction; Hyperspectral; Land cover; Normalization; Remote sensing; Subspace method

Indexed keywords

CLASSIFICATION (OF INFORMATION); SPECTROSCOPY;

EID: 67649610443     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s90604247     Document Type: Article
Times cited : (8)

References (40)
  • 2
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotically properties of multivariate data
    • Jimenez, L.O.; Landgrebe, D.A. Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotically properties of multivariate data. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 1998, 28, 39-54.
    • (1998) IEEE Trans. Syst. Man Cybern. C Appl. Rev. , vol.28 , pp. 39-54
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 3
    • 4143064738 scopus 로고    scopus 로고
    • Methodology for hyperspectral band selection
    • Bajcsy, P.; Groves, P. Methodology for hyperspectral band selection. Photogramm. Eng. Remote Sens. 2004, 70, 793-802.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 793-802
    • Bajcsy, P.1    Groves, P.2
  • 4
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, IT-14, 55-63.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , pp. 55-63
    • Hughes, G.F.1
  • 5
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Plaza, A.; Martínez, P.; Plaza, J.; Pérez, R. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geosci. Remote Sens. 2005, 43, 466-479.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 466-479
    • Plaza, A.1    Martínez, P.2    Plaza, J.3    Pérez, R.4
  • 6
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • Serpico, S. B.; Moser, G. Extraction of spectral channels from hyperspectral images for classification purposes. IEEE Trans. Geosci. Remote Sens. 2007, 45, 484-495.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 484-495
    • Serpico, S.B.1    Moser, G.2
  • 7
    • 36649033329 scopus 로고    scopus 로고
    • Detection of yellow starthistle through band selection and feature extraction from hyperspectral imagery
    • Miao, X.; Gong, P; Swope, S.; Pu, R.L.; Carruthers, R.; Anderson, G.L. Detection of yellow starthistle through band selection and feature extraction from hyperspectral imagery. Photogramm. Eng. Remote Sens. 2007, 73, 1005-1015.
    • (2007) Photogramm. Eng. Remote Sens. , vol.73 , pp. 1005-1015
    • Miao, X.1    Gong, P.2    Swope, S.3    Pu, R.L.4    Carruthers, R.5    Anderson, G.L.6
  • 8
    • 33846627768 scopus 로고    scopus 로고
    • Unsupervised linear featureextraction methods and their effects in the classification of high-dimensional data
    • Jimenez-Rodriguez, L.O.; Arzuaga-Cruz, E.; Velez-Reyes, M. Unsupervised linear featureextraction methods and their effects in the classification of high-dimensional data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 469-483.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 469-483
    • Jimenez-Rodriguez, L.O.1    Arzuaga-Cruz, E.2    Velez-Reyes, M.3
  • 10
    • 37549016011 scopus 로고    scopus 로고
    • The role of digital bathymetry in mapping shallow marine vegetation from hyperspectral image data
    • Gagnon, P.; Scheibling, R.E.; Jones, W.; Tully, D. The role of digital bathymetry in mapping shallow marine vegetation from hyperspectral image data. Int. J. Remote Sens. 2008, 29, 879-904.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 879-904
    • Gagnon, P.1    Scheibling, R.E.2    Jones, W.3    Tully, D.4
  • 11
    • 33846804490 scopus 로고    scopus 로고
    • Noise reduction and best band selection techniques for improving classification results using hyperspectral data: Application to lithological mapping in Canada's Arctic
    • Harris, J.R.; Ponomarev, P.; Shang, J.; Rogge, D. Noise reduction and best band selection techniques for improving classification results using hyperspectral data: application to lithological mapping in Canada's Arctic. Can. J. Rem. Sens. 2006, 32, 341-354.
    • (2006) Can. J. Rem. Sens. , vol.32 , pp. 341-354
    • Harris, J.R.1    Ponomarev, P.2    Shang, J.3    Rogge, D.4
  • 12
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Harsanyi, J., Chang, C.-I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779-785.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , pp. 779-785
    • Harsanyi, J.1    Chang, C.-I.2
  • 13
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 14
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Bazi, Y.; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3374-3385.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 15
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804-3814.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 16
    • 55349107801 scopus 로고    scopus 로고
    • Bayesian learning with Gaussian processes for supervised classification of hyperspectral data
    • Zhao, K.G.; Popescu, S.; Zhang, X.S. Bayesian learning with Gaussian processes for supervised classification of hyperspectral data. Photogramm. Eng. Remote Sens. 2008, 74, 1223-1234.
    • (2008) Photogramm. Eng. Remote Sens. , vol.74 , pp. 1223-1234
    • Zhao, K.G.1    Popescu, S.2    Zhang, X.S.3
  • 17
    • 38349181507 scopus 로고    scopus 로고
    • A fast separability-based feature-selection method for high-dimensional remotely sensed image classification
    • Guo, B.; Damper, R.I.; Gunn, S.R.; Nelson, J.D.B. A fast separability-based feature-selection method for high-dimensional remotely sensed image classification. Patt. Recog. 2008, 41, 1653-1662.
    • (2008) Patt. Recog. , vol.41 , pp. 1653-1662
    • Guo, B.1    Damper, R.I.2    Gunn, S.R.3    Nelson, J.D.B.A.4
  • 18
    • 59249100334 scopus 로고    scopus 로고
    • Multi-channel morphological profiles for classification of hyperspectral images using support vector machines
    • Plaza, J.; Plaza, A.J.; Barra, C. Multi-channel morphological profiles for classification of hyperspectral images using support vector machines. Sensors 2009, 9, 196-218.
    • (2009) Sensors , vol.9 , pp. 196-218
    • Plaza, J.1    Plaza, A.J.2    Barra, C.3
  • 20
    • 56749172068 scopus 로고    scopus 로고
    • Level set hyperspectral image classification using best band analysis
    • Ball, J.E.; Bruce, L.M. Level set hyperspectral image classification using best band analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3022-3027.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 3022-3027
    • Ball, J.E.1    Bruce, L.M.2
  • 23
    • 67649604765 scopus 로고    scopus 로고
    • Fast image retrieval by subspace method with polynomial approximation
    • Omachi, S.; Omachi, M. Fast image retrieval by subspace method with polynomial approximation. IEICE Trans. Inf. Syst. 2008, J91-D, 1561-1568.
    • (2008) IEICE Trans. Inf. Syst. , vol.J91-D , pp. 1561-1568
    • Omachi, S.1    Omachi, M.2
  • 24
    • 47849113845 scopus 로고    scopus 로고
    • Classification of airborne hyperspectral data based on the average learning subspace method
    • Bagan, H.; Yasuoka, Y.; Endo, T.; Wang, X.; Feng, Z. Classification of airborne hyperspectral data based on the average learning subspace method. IEEE Geosci. Remote Sens. Lett. 2008, 5, 368-372.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , pp. 368-372
    • Bagan, H.1    Yasuoka, Y.2    Endo, T.3    Wang, X.4    Feng, Z.5
  • 25
    • 0029502582 scopus 로고
    • Relative radiometric normalization of Landsat Multi-spectral Scanner (MSS) data using an automatic scattergram-controlled regression
    • Elvidge, C.D.; Yuan, D.; Weerackoon, R.D.; Lunetta, R.S. Relative radiometric normalization of Landsat Multi-spectral Scanner (MSS) data using an automatic scattergram-controlled regression. Photogramm. Eng. Remote Sens. 1995, 61, 1255-1260.
    • (1995) Photogramm. Eng. Remote Sens. , vol.61 , pp. 1255-1260
    • Elvidge, C.D.1    Yuan, D.2    Weerackoon, R.D.3    Lunetta, R.S.4
  • 26
    • 15744390386 scopus 로고    scopus 로고
    • Landsat-7 ETM+ radiometric normalization comparison for northern mapping applications
    • Olthof, I.; Pouliot, D.; Fernandes, R.; Latifovic, R. Landsat-7 ETM+ radiometric normalization comparison for northern mapping applications. Remote Sens. Environ. 2007, 95, 388-398.
    • (2007) Remote Sens. Environ. , vol.95 , pp. 388-398
    • Olthof, I.1    Pouliot, D.2    Fernandes, R.3    Latifovic, R.4
  • 28
    • 0042058309 scopus 로고
    • The Jacobi method for real symmetric matrices
    • Rutishauser, H.; The Jacobi method for real symmetric matrices. Numer. Math. 1966, 9, 1-10.
    • (1966) Numer. Math. , vol.9 , pp. 1-10
    • Rutishauser, H.1
  • 30
    • 0004121838 scopus 로고
    • Research Studies Press and John Wiley & Sons: Letchworth, U.K
    • Oja, E. Subspace Methods of Pattern Recognition; Research Studies Press and John Wiley & Sons: Letchworth, U.K. 1983.
    • (1983) Subspace Methods of Pattern Recognition
    • Oja, E.1
  • 31
    • 0032669003 scopus 로고    scopus 로고
    • Subspace classifier in the Hilbert space
    • Tsuda, K. Subspace classifier in the Hilbert space. Patt. Recog. Lett. 1999, 20, 513-519.
    • (1999) Patt. Recog. Lett. , vol.20 , pp. 513-519
    • Tsuda, K.1
  • 32
    • 84902154035 scopus 로고    scopus 로고
    • Subspace dimension selection and averaged learning subspace method in handwritten digit classification
    • Proceedings of the International Conference on Artificial Neural Networks, Bochum, Germany, 16-19 July
    • Laaksonen, J.; Oja, E. Subspace dimension selection and averaged learning subspace method in handwritten digit classification. Proceedings of the International Conference on Artificial Neural Networks, Bochum, Germany, 16-19 July, 1996, pp. 227-232.
    • (1996) , pp. 227-232
    • Laaksonen, J.1    Oja, E.2
  • 33
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines 2001
    • [Online]. URL, last date accessed: 1 May
    • Chang, C.C.; Lin, C.J. LIBSVM: a library for support vector machines 2001, [Online]. URL: http://www.csie.ntu.edu.tw/~cjlin/libsvm (last date accessed: 1 May 2009).
    • (2009)
    • Chang, C.C.1    Lin, C.J.2
  • 36
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison evaluating the statistical significance of differences in classification accuracy
    • Foody, G.M. Thematic map comparison evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627-633.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 37
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the classification of a specific class. Remote Sens. Environ. 2006, 104, 1-14.
    • (2006) Remote Sens. Environ. , vol.104 , pp. 1-14
    • Mathur, A.1    Sanchez-Hernandez, C.2    Boyd, D.S.3
  • 38
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of support vector machines for classification of multisensor data
    • Waske, B.; Benediktsson, J.A. Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3858-3866.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.A.2
  • 39
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf, B.; Smola, A.; Muller, K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neur. Comput. 1998, 10, 1299-1319.
    • (1998) Neur. Comput. , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 40
    • 33745857356 scopus 로고    scopus 로고
    • Kernel projection classifiers with suppressing features of other classes
    • Washizawa, Y.; Yamashita, Y. Kernel projection classifiers with suppressing features of other classes. Neur. Comput. 2006, 18, 1932-1950.
    • (2006) Neur. Comput. , vol.18 , pp. 1932-1950
    • Washizawa, Y.1    Yamashita, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.