메뉴 건너뛰기




Volumn 9, Issue , 2009, Pages

Integrated application of uniform design and least-squares support vector machines to transfection optimization

Author keywords

[No Author keywords available]

Indexed keywords

CELL DENSITY; DEPENDENT VARIABLES; HIGH EFFICIENCY; HIGHER EFFICIENCY; INDEPENDENT VARIABLES; INTEGRATED APPLICATIONS; LEAST SQUARES SUPPORT VECTOR MACHINES; MAMMALIAN CELLS; MATHEMATICAL METHOD; NOVEL METHODS; SEEDED CELLS; TRANSFECTION EFFICIENCY; UNIFORM DESIGN;

EID: 67649514845     PISSN: None     EISSN: 14726750     Source Type: Journal    
DOI: 10.1186/1472-6750-9-52     Document Type: Article
Times cited : (7)

References (20)
  • 2
    • 0018468345 scopus 로고
    • A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
    • 10.2307/1268522
    • McKay MD Beckman RJ Conover WJ A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code Technometrics 1979, 21:239-245. 10.2307/1268522
    • (1979) Technometrics , vol.21 , pp. 239-245
    • McKay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 3
    • 0003219936 scopus 로고
    • The uniform design: Application of number-theoretic methods in experimental design
    • Fang KT The uniform design: Application of number-theoretic methods in experimental design Acta Mathematicae Applagatae Sinica 1980, 3:363-372.
    • (1980) Acta Mathematicae Applagatae Sinica , vol.3 , pp. 363-372
    • Fang, K.T.1
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • 10.1023/A:1009715923555
    • Burges CJC A Tutorial on Support Vector Machines for Pattern Recognition Data Mining and Knowledge Discovery 1998, 2(2):121-167. 10.1023/ A:1009715923555
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • 18252602
    • Vapnik VN An overview of statistical learning theory IEEE TRANSACTIONS ON NEURAL NETWORKS 1999, 10(5):988-999. 10.1109/72.788640 18252602
    • (1999) IEEE TRANSACTIONS ON NEURAL NETWORKS , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 7
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • 10.1162/15324430152733142
    • Collobert R Bengio S SVMTorch: Support vector machines for large-scale regression problems J Mach Learn Res 2001, 1:143-160. 10.1162/ 15324430152733142
    • (2001) J Mach Learn Res , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 8
    • 0032638628 scopus 로고    scopus 로고
    • Least Squares Support Vector Machine Classifiers
    • 10.1023/A:1018628609742
    • Suykens JAK Vandewalle J Least Squares Support Vector Machine Classifiers Neural Processing Letters 1999, 9(3):293-300. 10.1023/ A:1018628609742
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 9
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M Cross-validatory choice and assessment of statistical predictions Journal of the Royal Statistical Society 1974, 36(1):111-147.
    • (1974) Journal of the Royal Statistical Society , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1
  • 10
    • 33747890719 scopus 로고    scopus 로고
    • Sequential uniform designs for fingerprints development of Ginkgo biloba extracts by capillary electrophoresis
    • 10.1016/j.chroma.2006.06.053 16828781
    • Ji YB Alaerts G Xu CJ Hu YZ Heyden Vander Y Sequential uniform designs for fingerprints development of Ginkgo biloba extracts by capillary electrophoresis J Chromatogr A 2006, 1128(1-2):273-281. 10.1016/ j.chroma.2006.06.053 16828781
    • (2006) J Chromatogr A , vol.1128 , Issue.1-2 , pp. 273-281
    • Ji, Y.B.1    Alaerts, G.2    Xu, C.J.3    Hu, Y.Z.4    Heyden, Y.5
  • 11
    • 0026271498 scopus 로고
    • Application of uniform design in L-isoleucine fermentation
    • 1823590
    • Liu D Wang P Li F Li J Application of uniform design in L-isoleucine fermentation Chinese journal of biotechnology 1991, 7(3):207-212. 1823590
    • (1991) Chinese Journal of Biotechnology , vol.7 , Issue.3 , pp. 207-212
    • Liu, D.1    Wang, P.2    Li, F.3    Li, J.4
  • 12
    • 0142106009 scopus 로고    scopus 로고
    • Optimization of submerged-culture conditions for mycelial growth and exo-biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis
    • 10.1042/BA20030020
    • Xu CP Yun JW Optimization of submerged-culture conditions for mycelial growth and exo-biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis Biotechnology and applied biochemistry 2003, 38(Pt 2):193-199. 10.1042/ BA20030020
    • (2003) Biotechnology and Applied Biochemistry , vol.38 , Issue.PART 2 , pp. 193-199
    • Xu, C.P.1    Yun, J.W.2
  • 13
    • 57649196727 scopus 로고    scopus 로고
    • Fast splice site detection using information content and feature reduction
    • 2638148 10.1186/1471-2105-9-S12-S8
    • Baten AK Halgamuge SK Chang BC Fast splice site detection using information content and feature reduction BMC bioinformatics 2008, 9(Suppl 12):S8. 2638148 19091031 10.1186/1471-2105-9-S12-S8
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 12
    • Baten, A.K.1    Halgamuge, S.K.2    Chang, B.C.3
  • 14
    • 57649181721 scopus 로고    scopus 로고
    • Predicting RNA-binding sites of proteins using support vector machines and evolutionary information
    • 2638146 19091029 10.1186/1471-2105-9-S12-S6
    • Cheng CW Su EC Hwang JK Sung TY Hsu WL Predicting RNA-binding sites of proteins using support vector machines and evolutionary information BMC bioinformatics 2008, 9(Suppl 12):S6. 2638146 19091029 10.1186/ 1471-2105-9-S12-S6
    • (2008) BMC Bioinformatics , vol.9
    • Cheng, C.W.1    Su, E.C.2    Hwang, J.K.3    Sung, T.Y.4    Hsu, W.L.5
  • 15
    • 44349159560 scopus 로고    scopus 로고
    • Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences
    • 2396404 18390576 10.1093/nar/gkn159
    • Guo Y Yu L Wen Z Li M Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences Nucleic acids research 2008, 36(9):3025-3030. 2396404 18390576 10.1093/nar/gkn159
    • (2008) Nucleic Acids Research , vol.36 , Issue.9 , pp. 3025-3030
    • Guo, Y.1    Yu, L.2    Wen, Z.3    Li, M.4
  • 16
    • 60649095847 scopus 로고    scopus 로고
    • Large-scale prediction of long disordered regions in proteins using random forests
    • 2637845 10.1186/1471-2105-10-8
    • Han P Zhang X Norton RS Feng ZP Large-scale prediction of long disordered regions in proteins using random forests BMC bioinformatics 2009, 10(1):8. 2637845 19128505 10.1186/1471-2105-10-8
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 8
    • Han, P.1    Zhang, X.2    Norton, R.S.3    Feng, Z.P.4
  • 17
    • 34547582418 scopus 로고    scopus 로고
    • CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine
    • 1933232 10.1093/nar/gkm391
    • Kong L Zhang Y Ye ZQ Liu XQ Zhao SQ Wei L Gao G CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine Nucleic acids research 2007, 35(Web Server):W345-349. 1933232 17631615 10.1093/nar/gkm391
    • (2007) Nucleic Acids Research
    • Kong, L.1    Zhang, Y.2    Ye, Z.Q.3    Liu, X.Q.4    Zhao, S.Q.5    Wei, L.6    Gao, G.7
  • 18
    • 33846904978 scopus 로고    scopus 로고
    • GISMO - Gene identification using a support vector machine for ORF classification
    • 1802617 10.1093/nar/gkl1083
    • Krause L McHardy AC Nattkemper TW Puhler A Stoye J Meyer F GISMO - gene identification using a support vector machine for ORF classification Nucleic acids research 2007, 35(2):540-549. 1802617 17175534 10.1093/nar/ gkl1083
    • (2007) Nucleic Acids Research , vol.35 , Issue.2 , pp. 540-549
    • Krause, L.1    McHardy, A.C.2    Nattkemper, T.W.3    Puhler, A.4    Stoye, J.5    Meyer, F.6
  • 20
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • 10.1016/S0893-6080(03)00169-2 14690712
    • Cherkassky V Ma Y Practical selection of SVM parameters and noise estimation for SVM regression Neural Networks 2004, 17(1):113-126. 10.1016/S0893-6080(03)00169-2 14690712
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.