메뉴 건너뛰기




Volumn 42, Issue 11, 2009, Pages 2335-2352

Finding representative landmarks of data on manifolds

Author keywords

Data representation; Dimensionality reduction; Manifold learning

Indexed keywords

DATA ANALYSIS TOOL; DATA MANIFOLDS; DATA POINTS; DATA REPRESENTATION; DATA-DRIVEN; DIMENSIONALITY REDUCTION; EUCLIDEAN SPACES; GRAPH TOPOLOGY; MANIFOLD LEARNING; MANIFOLD LEARNING ALGORITHM; NEIGHBOURHOOD GRAPHS; NON-PARAMETRIC MODEL; PROBLEM SIZE; SYNTHETIC DATA; TEST PROCEDURES; TIME COST; TRAINING SETS;

EID: 67649413089     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.01.032     Document Type: Article
Times cited : (10)

References (35)
  • 1
  • 2
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching in fixed dimensions
    • S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal algorithm for approximate nearest neighbor searching in fixed dimensions, Journal of the ACM 45 (1998) 891-923.
    • (1998) Journal of the ACM , vol.45 , pp. 891-923
    • Arya, S.1    Mount, D.2    Netanyahu, N.3    Silverman, R.4    Wu, A.5
  • 3
    • 9444272387 scopus 로고    scopus 로고
    • Ph.D. Thesis, Department of Mathematics, University of Chicago
    • M. Belkin, Problems of learning on manifolds, Ph.D. Thesis, Department of Mathematics, University of Chicago, 2003.
    • (2003) Problems of learning on manifolds
    • Belkin, M.1
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15 6 (2003) 1373-1396
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., and Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 7 (2006) 2399-2434
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 7
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley J. Multidimensional binary search trees used for associative searching. Communications of the ACM 18 9 (1975) 509-517
    • (1975) Communications of the ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.1
  • 12
    • 4143089050 scopus 로고    scopus 로고
    • Hessian eigenmaps: New locally linear embedding techniques for highdimensional data
    • Technical Report TR2003-08, Department of Statistics, Stanford University
    • D.L. Donoho, C. Grimes, Hessian eigenmaps: new locally linear embedding techniques for highdimensional data, Technical Report TR2003-08, Department of Statistics, Stanford University, 2003.
    • (2003)
    • Donoho, D.L.1    Grimes, C.2
  • 17
    • 34948890699 scopus 로고    scopus 로고
    • Performance analysis of a manifold learning algorithm in dimension reduction
    • Technical Report, Statistics Group, Georgia Institute of Technology
    • X. Huo, A.K. Smith, Performance analysis of a manifold learning algorithm in dimension reduction, Technical Report, Statistics Group, Georgia Institute of Technology, 2006.
    • (2006)
    • Huo, X.1    Smith, A.K.2
  • 26
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 290 5500 (2000) 2323-2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.2
  • 27
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L.K., and Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4 1 (2003) 119-155
    • (2003) Journal of Machine Learning Research , vol.4 , Issue.1 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 28
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenebaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 5500 (2000) 2319-2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenebaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 29
    • 84961698383 scopus 로고    scopus 로고
    • Wiley, New York, Chapter 2
    • P. van Oosterom, Spatial Access Methods, vol. 1, Wiley, New York, 1999, pp. 385-400 (Chapter 2).
    • (1999) Spatial Access Methods , vol.1 , pp. 385-400
    • van Oosterom, P.1
  • 33
    • 0344099041 scopus 로고    scopus 로고
    • Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction
    • C. Zhang, J. Wang, N. Zhao, D. Zhang, Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction, Pattern Recognition (2004) 325-336.
    • (2004) Pattern Recognition , pp. 325-336
    • Zhang, C.1    Wang, J.2    Zhao, N.3    Zhang, D.4
  • 34
    • 67649393269 scopus 로고    scopus 로고
    • J. Zhang H. Shen, Z.-H. Zhou, Unified locally linear embedding and linear discriminant analysis algorithm (ULLELDA) for face recognition, in: SINOBIOMETRICS, 2004.
    • J. Zhang H. Shen, Z.-H. Zhou, Unified locally linear embedding and linear discriminant analysis algorithm (ULLELDA) for face recognition, in: SINOBIOMETRICS, 2004.
  • 35
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Zhang Z., and Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing 26 1 (2005) 313-338
    • (2005) SIAM Journal on Scientific Computing , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.