메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Hierarchical structuring of data on manifolds

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; EMBEDDED SYSTEMS; HIERARCHICAL SYSTEMS; LEARNING SYSTEMS; PERSONNEL TRAINING; QUERY LANGUAGES;

EID: 34948882794     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.382981     Document Type: Conference Paper
Times cited : (5)

References (23)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003.
    • (2003) Neural Computation
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 5044219639 scopus 로고    scopus 로고
    • Super-resolution through neighbor embedding
    • H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004.
    • (2004) CVPR
    • Chang, H.1    Yeung, D.-Y.2    Xiong, Y.3
  • 4
    • 85156202169 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In NIPS, 2002.
    • (2002) NIPS
    • de Silva, V.1    Tenenbaum, J.B.2
  • 5
    • 33745593949 scopus 로고    scopus 로고
    • Sparse multidimensional scaling using landmark points
    • Technical report, Stanford Mathematics, 2004
    • V. de Silva and J. B. Tenenbaum. Sparse multidimensional scaling using landmark points. Technical report, Stanford Mathematics, 2004.
    • de Silva, V.1    Tenenbaum, J.B.2
  • 6
    • 34948841145 scopus 로고    scopus 로고
    • D. L. Donoho and C. Grimes. Hessian eigenmaps: new locally linear embedding techniques for highdimensional data. In PAWS, 2003.
    • D. L. Donoho and C. Grimes. Hessian eigenmaps: new locally linear embedding techniques for highdimensional data. In PAWS, 2003.
  • 7
    • 17444432924 scopus 로고    scopus 로고
    • Image manifolds which are isometric to euclidean space
    • D. L. Donoho and C. Grimes. Image manifolds which are isometric to euclidean space. J. Math. Imaging Vis., 2005.
    • (2005) J. Math. Imaging Vis
    • Donoho, D.L.1    Grimes, C.2
  • 8
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643-660, 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intelligence , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 10
    • 34948890699 scopus 로고    scopus 로고
    • Performance analysis of a manifold learning, algorithm in dimension reduction
    • Technical report, Statistics Group, Georgia Institute of Technology
    • X. Huo and A. K. Smith. Performance analysis of a manifold learning, algorithm in dimension reduction. Technical report, Statistics Group, Georgia Institute of Technology, 2006.
    • (2006)
    • Huo, X.1    Smith, A.K.2
  • 14
    • 33847747927 scopus 로고    scopus 로고
    • Riemannian manifold learning for nonlinear dimensionality reduction
    • T. Lin, H. Zha, and S. U. Lee. Riemannian manifold learning for nonlinear dimensionality reduction. In Proceedings of ECCV, 2006.
    • (2006) Proceedings of ECCV
    • Lin, T.1    Zha, H.2    Lee, S.U.3
  • 16
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000.
    • (2000) Science
    • Roweis, S.1    Saul, L.2
  • 17
    • 24744436360 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res., 2003.
    • (2003) J. Mach. Learn. Res
    • Saul, L.K.1    Roweis, S.T.2
  • 18
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenebaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 2000.
    • (2000) Science
    • Tenebaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 19
    • 34948847790 scopus 로고    scopus 로고
    • P. van Oosterom. Spatial Access Methods, 1, chapter 2, pages 385-4-00. Wiley, 1999.
    • P. van Oosterom. Spatial Access Methods, volume 1, chapter 2, pages 385-4-00. Wiley, 1999.
  • 21
    • 0344099041 scopus 로고    scopus 로고
    • Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction
    • C. Zhang, J. Wang, N. Zhao, and D. Zhang. Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognition, 2004.
    • (2004) Pattern Recognition
    • Zhang, C.1    Wang, J.2    Zhao, N.3    Zhang, D.4
  • 22
    • 38949139261 scopus 로고    scopus 로고
    • Unified locally linear embedding and linear discriminant analysis algorithm (ullelda) for face recognition
    • J. Zhang, H. Shen, and Z.-H. Zhou. Unified locally linear embedding and linear discriminant analysis algorithm (ullelda) for face recognition. In SINOBIOMETRICS, 2004.
    • (2004) SINOBIOMETRICS
    • Zhang, J.1    Shen, H.2    Zhou, Z.-H.3
  • 23
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimension reduction via local tangent space alignment
    • Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Scientific Computing, 2005.
    • (2005) SIAM J. Scientific Computing
    • Zhang, Z.1    Zha, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.