-
1
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003.
-
(2003)
Neural Computation
-
-
Belkin, M.1
Niyogi, P.2
-
2
-
-
4344635655
-
Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering
-
Y Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In NIPS,
-
NIPS
-
-
Bengio, Y.1
Paiement, J.-F.2
Vincent, P.3
Delalleau, O.4
Roux, N.L.5
Ouimet, M.6
-
3
-
-
5044219639
-
Super-resolution through neighbor embedding
-
H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004.
-
(2004)
CVPR
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
4
-
-
85156202169
-
Global versus local methods in nonlinear dimensionality reduction
-
V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In NIPS, 2002.
-
(2002)
NIPS
-
-
de Silva, V.1
Tenenbaum, J.B.2
-
5
-
-
33745593949
-
Sparse multidimensional scaling using landmark points
-
Technical report, Stanford Mathematics, 2004
-
V. de Silva and J. B. Tenenbaum. Sparse multidimensional scaling using landmark points. Technical report, Stanford Mathematics, 2004.
-
-
-
de Silva, V.1
Tenenbaum, J.B.2
-
6
-
-
34948841145
-
-
D. L. Donoho and C. Grimes. Hessian eigenmaps: new locally linear embedding techniques for highdimensional data. In PAWS, 2003.
-
D. L. Donoho and C. Grimes. Hessian eigenmaps: new locally linear embedding techniques for highdimensional data. In PAWS, 2003.
-
-
-
-
7
-
-
17444432924
-
Image manifolds which are isometric to euclidean space
-
D. L. Donoho and C. Grimes. Image manifolds which are isometric to euclidean space. J. Math. Imaging Vis., 2005.
-
(2005)
J. Math. Imaging Vis
-
-
Donoho, D.L.1
Grimes, C.2
-
8
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643-660, 2001.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intelligence
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.1
Belhumeur, P.2
Kriegman, D.3
-
10
-
-
34948890699
-
Performance analysis of a manifold learning, algorithm in dimension reduction
-
Technical report, Statistics Group, Georgia Institute of Technology
-
X. Huo and A. K. Smith. Performance analysis of a manifold learning, algorithm in dimension reduction. Technical report, Statistics Group, Georgia Institute of Technology, 2006.
-
(2006)
-
-
Huo, X.1
Smith, A.K.2
-
12
-
-
84893405732
-
Data clustering: A review
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput. Surv., 31(3):264-323, 1999.
-
(1999)
ACM Comput. Surv
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
14
-
-
33847747927
-
Riemannian manifold learning for nonlinear dimensionality reduction
-
T. Lin, H. Zha, and S. U. Lee. Riemannian manifold learning for nonlinear dimensionality reduction. In Proceedings of ECCV, 2006.
-
(2006)
Proceedings of ECCV
-
-
Lin, T.1
Zha, H.2
Lee, S.U.3
-
16
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000.
-
(2000)
Science
-
-
Roweis, S.1
Saul, L.2
-
17
-
-
24744436360
-
Think globally, fit locally: Unsupervised learning of low dimensional manifolds
-
L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res., 2003.
-
(2003)
J. Mach. Learn. Res
-
-
Saul, L.K.1
Roweis, S.T.2
-
18
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenebaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 2000.
-
(2000)
Science
-
-
Tenebaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
19
-
-
34948847790
-
-
P. van Oosterom. Spatial Access Methods, 1, chapter 2, pages 385-4-00. Wiley, 1999.
-
P. van Oosterom. Spatial Access Methods, volume 1, chapter 2, pages 385-4-00. Wiley, 1999.
-
-
-
-
20
-
-
33750559978
-
Manifold learning, a promised land or work in progress?
-
M.-C. Yeh, I.-H. Lee, G. Wu, Y Wu, and E. Chang. Manifold learning, a promised land or work in progress? In Proc. of IEEE Conf. on Multimedia and Expo, 2005.
-
(2005)
Proc. of IEEE Conf. on Multimedia and Expo
-
-
Yeh, M.-C.1
Lee, I.-H.2
Wu, G.3
Wu, Y.4
Chang, E.5
-
21
-
-
0344099041
-
Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction
-
C. Zhang, J. Wang, N. Zhao, and D. Zhang. Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognition, 2004.
-
(2004)
Pattern Recognition
-
-
Zhang, C.1
Wang, J.2
Zhao, N.3
Zhang, D.4
-
22
-
-
38949139261
-
Unified locally linear embedding and linear discriminant analysis algorithm (ullelda) for face recognition
-
J. Zhang, H. Shen, and Z.-H. Zhou. Unified locally linear embedding and linear discriminant analysis algorithm (ullelda) for face recognition. In SINOBIOMETRICS, 2004.
-
(2004)
SINOBIOMETRICS
-
-
Zhang, J.1
Shen, H.2
Zhou, Z.-H.3
-
23
-
-
14544307975
-
Principal manifolds and nonlinear dimension reduction via local tangent space alignment
-
Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Scientific Computing, 2005.
-
(2005)
SIAM J. Scientific Computing
-
-
Zhang, Z.1
Zha, H.2
|