메뉴 건너뛰기




Volumn 39, Issue 4, 2009, Pages 379-388

Empirical case studies in attribute noise detection

Author keywords

Attribute noise; Data cleaning; Data quality; Noise detection; Pairwise attribute noise detection algorithm (PANDA)

Indexed keywords

ATTRIBUTE NOISE; DATA CLEANING; DATA QUALITY; NOISE DETECTION; PAIRWISE ATTRIBUTE NOISE DETECTION ALGORITHM (PANDA);

EID: 67649250004     PISSN: 10946977     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCC.2009.2013815     Document Type: Article
Times cited : (25)

References (20)
  • 1
    • 0030354375 scopus 로고    scopus 로고
    • Identifying and eliminating mislabeled training instances
    • Portland, OR: AAAI Press
    • C. E. Brodley and M. A. Friedl, "Identifying and eliminating mislabeled training instances," in Proc. 13th Nat. Conf. Artif. Intell., Portland, OR: AAAI Press, 1996, pp. 799-805.
    • (1996) Proc. 13th Nat. Conf. Artif. Intell , pp. 799-805
    • Brodley, C.E.1    Friedl, M.A.2
  • 2
    • 0000046054 scopus 로고    scopus 로고
    • Identifying mislabeled training data
    • C. E. Brodley and M. A. Friedl, "Identifying mislabeled training data," J. Artif. Intell. Res., vol. 11, pp. 131-167, 1999.
    • (1999) J. Artif. Intell. Res , vol.11 , pp. 131-167
    • Brodley, C.E.1    Friedl, M.A.2
  • 4
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Online, Available
    • M. Dash and H. Liu, "Feature selection for classification," Intell. Data Anal., vol. 1, no. 3, pp. 131-156, 1997. [Online]. Available: citeseer.ist.psu.edu/dash97feature.html
    • (1997) Intell. Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 5
    • 67649298548 scopus 로고    scopus 로고
    • N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach, 2nd ed. Boston, MA: PWS-Kent ITP, 1997.
    • N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach, 2nd ed. Boston, MA: PWS-Kent ITP, 1997.
  • 6
    • 0000680292 scopus 로고    scopus 로고
    • Noise elimination in inductive concept learning: A case study in medical diagnosis
    • Berlin, Germany: Springer-Verlag
    • D. Gamberger, N. Lavrač, and S. Džeroski, "Noise elimination in inductive concept learning: A case study in medical diagnosis," in Proc. 7th Int. Workshop Algorithmic Learning Theory. Berlin, Germany: Springer-Verlag, 1999, pp. 199-212.
    • (1999) Proc. 7th Int. Workshop Algorithmic Learning Theory , pp. 199-212
    • Gamberger, D.1    Lavrač, N.2    Džeroski, S.3
  • 7
    • 0013331361 scopus 로고    scopus 로고
    • Real-world data is dirty: Data cleansing and the merge/purge problem
    • M.A.Hernandez and S. J. Stolfo, "Real-world data is dirty: Data cleansing and the merge/purge problem," Data Mining Knowl. Discov. vol. 2, no. 1, pp. 9-37, 1998.
    • (1998) Data Mining Knowl. Discov , vol.2 , Issue.1 , pp. 9-37
    • Hernandez, M.A.1    Stolfo, S.J.2
  • 9
    • 0032156744 scopus 로고    scopus 로고
    • Classification of fault-prone software modules: Prior probabilities, costs and model evaluation
    • T.M. Khoshgoftaar and E.B. Allen, "Classification of fault-prone software modules: Prior probabilities, costs and model evaluation," Empirical Softw. Eng., vol. 3, pp. 275-298, 1998.
    • (1998) Empirical Softw. Eng , vol.3 , pp. 275-298
    • Khoshgoftaar, T.M.1    Allen, E.B.2
  • 10
    • 14844337488 scopus 로고    scopus 로고
    • The necessity of assuring quality in software measurement data
    • Chicago, IL: IEEE Computer Society, Sep
    • T. M. Khoshgoftaar and N. Seliya, "The necessity of assuring quality in software measurement data," in Proc. 10th Int. Softw. Metrics Symp. Chicago, IL: IEEE Computer Society, Sep. 2004, pp. 119-130.
    • (2004) Proc. 10th Int. Softw. Metrics Symp , pp. 119-130
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 11
  • 12
    • 84883723652 scopus 로고    scopus 로고
    • Enhancing software quality estimation using ensemble-classifier based noise filtering
    • T. M. Khoshgoftaar, S. Zhong, and V. Joshi, "Enhancing software quality estimation using ensemble-classifier based noise filtering," Intell. Data Anal.: Int. J., vol. 9, no. 1, pp. 3-27, 2005.
    • (2005) Intell. Data Anal.: Int. J , vol.9 , Issue.1 , pp. 3-27
    • Khoshgoftaar, T.M.1    Zhong, S.2    Joshi, V.3
  • 14
    • 0003408496 scopus 로고    scopus 로고
    • Univ. California, Dept. Inf. Comput. Sci, Online, Available
    • P. M. Murphy and D. W. Aha. (1998). "UCI repository of machine learning databases," Univ. California, Dept. Inf. Comput. Sci. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
    • (1998) UCI repository of machine learning databases
    • Murphy, P.M.1    Aha, D.W.2
  • 15
    • 0002490026 scopus 로고    scopus 로고
    • Data cleaning: Problems and current approaches
    • E. Rahm and H. Do, "Data cleaning: Problems and current approaches," Bull. Tech. Committee Data Eng., vol. 23, no. 4, pp. 3-13, 2000.
    • (2000) Bull. Tech. Committee Data Eng , vol.23 , Issue.4 , pp. 3-13
    • Rahm, E.1    Do, H.2
  • 16
    • 0004282518 scopus 로고    scopus 로고
    • SAS Institute, Cary, NC: SAS Institute Inc
    • SAS Institute, SAS/STAT User's Guide. Cary, NC: SAS Institute Inc., 2004.
    • (2004) SAS/STAT User's Guide
  • 19
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • Nov
    • X. Zhu and X. Wu, "Class noise vs attribute noise: A quantitative study of their impacts," Artif. Intell. Rev., vol. 22, no. 3-4, pp. 177-210, Nov. 2004.
    • (2004) Artif. Intell. Rev , vol.22 , Issue.3-4 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 20
    • 19544391806 scopus 로고    scopus 로고
    • Cost-guided class noise handling for effective cost-sensitive learning
    • Nov, pp
    • X. Zhu and X. Wu, "Cost-guided class noise handling for effective cost-sensitive learning," in Proc. 4th IEEE Int. Conf. Data Mining (ICDM 2004), Nov., pp. 297-304.
    • Proc. 4th IEEE Int. Conf. Data Mining (ICDM 2004) , pp. 297-304
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.