-
1
-
-
0000046054
-
Identifying mislabeled training data
-
C. Brodley & M. Friedl, Identifying mislabeled training data, J. of AI Research, 11:131-167, 1999.
-
(1999)
J. of AI Research
, vol.11
, pp. 131-167
-
-
Brodley, C.1
Friedl, M.2
-
2
-
-
0000619102
-
Pruning decision trees with misclassification costs
-
J. Bradford, C. Kunz, R. Kohavi, C. Brunk, & C. Brodley, Pruning decision trees with misclassification costs. Proc. of ECML, 1998.
-
(1998)
Proc. of ECML
-
-
Bradford, J.1
Kunz, C.2
Kohavi, R.3
Brunk, C.4
Brodley, C.5
-
3
-
-
0003802343
-
-
Wadsworth & Brooks, CA
-
L. Breiman, J. Friedman, R. Olshen, & C. Stone, Classification and Regression Trees. Wadsworth & Brooks, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
4
-
-
0002106691
-
MetaCost: A general method for making classifiers costsensitive
-
P. Domingos, MetaCost: a general method for making classifiers costsensitive. Proc. of KDD, 1999.
-
(1999)
Proc. of KDD
-
-
Domingos, P.1
-
5
-
-
85041528332
-
Reducing misclassification costs
-
M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume & C. Brunk, Reducing misclassification costs, Proc. of ICML, 1994.
-
(1994)
Proc. of ICML
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
Ali, K.4
Hume, T.5
Brunk, C.6
-
6
-
-
9444266288
-
Pruning improves heuristic search for cost-sensitive learning
-
V. Zubek & T. Dietterich, Pruning improves heuristic search for cost-sensitive learning, Proc. of ICML, 2002.
-
(2002)
Proc. of ICML
-
-
Zubek, V.1
Dietterich, T.2
-
8
-
-
0027682298
-
Cost-sensitive learning of classification knowledge and its applications in robotics
-
M. Tan, Cost-sensitive learning of classification knowledge and its applications in robotics, Machine Learning, 13:7-33, 1993.
-
(1993)
Machine Learning
, vol.13
, pp. 7-33
-
-
Tan, M.1
-
9
-
-
0000159863
-
Toward scalable learning with non-uniform class and cost distributions
-
P. Chan & S. Stolfo, Toward scalable learning with non-uniform class and cost distributions, Proc. of KDD, 1998.
-
(1998)
Proc. of KDD
-
-
Chan, P.1
Stolfo, S.2
-
10
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
B. Zadrozny, J. Langford & N. Abe, Cost-sensitive learning by cost-proportionate example weighting, Proc. of ICDM, 2003.
-
(2003)
Proc. of ICDM
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
-
11
-
-
12244287068
-
An iterative method for multi-class cost-sensitive learning
-
N. Abe & B. Zadrozny, An iterative method for multi-class cost-sensitive learning, Proc. of KDD, 2004.
-
(2004)
Proc. of KDD
-
-
Abe, N.1
Zadrozny, B.2
-
12
-
-
1942517291
-
Perceptron based learning with example dependent and noisy costs
-
P. Geibel & F. Wysotzki, Perceptron based learning with example dependent and noisy costs, Proc. of ICML 2003.
-
(2003)
Proc. of ICML
-
-
Geibel, P.1
Wysotzki, F.2
-
16
-
-
19544386593
-
-
J. Quintan, http://rulequest.com/see5-info.html. 1997.
-
(1997)
-
-
Quintan, J.1
-
22
-
-
0027565178
-
Supervised learning on large redundant training sets
-
M.Moller, Supervised learning on large redundant training sets, Int. J. of Neural Systems, 4(1), 1993.
-
(1993)
Int. J. of Neural Systems
, vol.4
, Issue.1
-
-
Moller, M.1
-
23
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study of their impacts
-
in press
-
X. Zhu & X. Wu, Class noise vs attribute noise: A quantitative study of their impacts, Artificial Intelligence Review, in press, 2004.
-
(2004)
Artificial Intelligence Review
-
-
Zhu, X.1
Wu, X.2
|